

Power by expertise DIC ABS HV & LV CABLES

DIC∧BS[™]

Technical Catalogue for **POWER & CONTROL CABLES**

1.1 KV TO 33 KV

Index

Cable ranges at a glance	1-
Manufacturing of Cables	
Advantages	
Criteria for selection of Power Cables	
Special Production & Testing Capabilities	
Salient Features V.C.V / C.C.V Line Manufacturing Process	
Advantages of CCV line Dry Cure Process over Wet cure sioplas Process for HV cables	
Key Manufacturing Process in HV Cable Manufacturing	
Arrangement of a continuous catenary vulcanisation (ccv) line	1
Layout of a vertical extrusion line	1
Typical construction of 1 core HV XLPE cable	1
Typical construction of 3 core HVXLPE cable	1
Structure of XLPE cable	1
Manufacturing process flow chart for HV cable (upto 33kv)	1
Selection Guide	1
Scope	1
High Voltage Test	1
Core Identification	1
Cable Code	
Short circuit ratings	2
Reactance & capacitance of 1.1 kV & HP PVC cables	2
Capacitance	2
Capacitive Charging Current for XLPE Cable	2
Approximate reactance at 50 HZ (OHMS/KM)	2
Technical detail for	
1.1 kV Single Core, PVC Insulated, Un-armoured Cables	2
1.1 kV Two Core, PVC Insulated, Un-armoured Cables	2
1.1 kV Three Core, PVC Insulated, Un-armoured Cables	2
1.1 kV Three & Half Core, PVC Insulated, Un-armoured Cables	3
1.1 kV Four Core, PVC Insulated, Un-armoured Cables	3
Technical detail for	
1.1 kV Single Core, PVC Insulated, Armoured Cables	3
1.1 kV Two Core, PVC Insulated, Armoured Cables	3
1.1 kV Three Core, PVC Insulated, Armoured Cables	3
1.1 kV Three & Half Core, PVC Insulated, Armoured Cables	3
1.1 kV Four Core, PVC Insulated, Armoured Cables	3
Technical detail for	
1.1 kV 1.5 sq. mm Copper Cond. PVC Insulated, Armoured Cables	3
1.1 kV 2.5 sq. mm Copper Cond. PVC Insulated, Armoured Cables	3
Technical detail for	
1.1 kV Single Core, XLPE Insulated, Un-armoured Cables	3
1.1 kV Two Core, XLPE Insulated, Un-armoured Cables	4
1.1 kV Three Core, XLPE Insulated, Un-armoured Cables.	4
1.1 kV Three & Half Core, XLPE Insulated, Un-armoured Cables	4
4 4 M/ Farry Core VI DE Instituted Life accounted College	4

Index

Technical detail for	
1.1 kV Single Core, XLPE Insulated, Armoured Cables	44
1.1 kV Two Core, XLPE Insulated, Armoured Cables.	4
1.1 kV Three Core, XLPE Insulated, Armoured Cables	46
1.1 kV Three & Half Core, XLPE Insulated, Armoured Cables	47
1.1 kV Four Core, XLPE Insulated, Armoured Cables	48
Technical detail for	
3.3 kV Single Core, XLPE Insulated, Armoured Cables	49
3.3 kV Three Core, XLPE Insulated, Armoured Cables	50
Technical detail for	
3.8/6.6 kV Single Core, XLPE Insulated, Armoured Cables	5
3.8/6.6 kV Three Core, XLPE Insulated, Armoured Cables	52
Technical detail for	
6.6/6.6 kV & 6.35/11Kv Single Core, XLPE Insulated, Armoured Cables	50
6.6/6.6 kV & 6.35/11 Kv Three Core, XLPE Insulated, Armoured Cables	54
Technical detail for	
11/1 kV Single Core, XLPE, Insulated, Armoured Cables	55
11/11 IV Three Core, XLPE Insulated, Armoured Cables.	56
Technical detail for	
12.7/22 kV Single Core, XLPE Insulated, Armoured Cables	57
12.7/22 kV Three Core, XLPE Insulated, Armoured Cables.	58
Technical detail for	
19/33 kV Single Core, XLPE Insulated, Armoured Cables	59
19/33 kV Three Core, XLPE Insulated, Armoured Cables	60
Basic assumption for current ratings & rating factors	61-62
Selection criterial of M/VHV cable size for primary distribution	60
Unarmoured PVC Control Cable IS: 1554 (Pt - D - 1988)	64
Armoured PVC Control Cable IS: 1554 (Pt - D - 1988)	68
Technical detail for dicabs 1.1 kV 2.5 sq.mm copper cond,	66
Technical detail for dicabs 1.1 kV 1.5 sq.mm copper cond,	67
A Few Striking Features Of XLPE Cables	68
Capacitance	69-70
Current rating for three singe core	
Resistance of conductor	75
Approximate reactance at 50 Hz (ohms/km) single core HV XLPE cables	76-77
Approximate capacitance (microfarads/km) HV XLPE cables	78
Approximate three phase voltage drop (volts/amp/km) HV cables	79-80
Classification of test for XLPE cable	8
Routine test	82
Handling & storage	83
Standard drum lengths of cables	84

Cable ranges at a glance

	Cable la	anges at a giance	
Application	Type & Size	Options	Cross Sectional View
Cables for Power Supply to Residential, Commercial & Industrial units	PVC/XLPE Power cables for 1.1 & 3.3 kv for Electrical Substations as per IS:1554-1 & 2 Sizes : Single Core 10-1000 sq.mm Multicore 6-630 sq.mm	Conductor - Stranded / Solix, Circular / Shaped Aluminium / Copper Insulation - PVC / HR PVC / FRLS / PVC Inner Sheath - PVC / HR PVC / FRLS / PVC Unarmoured / Armoured - G.S. Round Wire/ Flat Strip or Aluminium Wire / Flat Strip Outer Sheath - PVC/HR PVC/FRLS PVC	Outer Street Accounting trone Teach New Medicals Advances of Cargoe Conductor
Heavy Duty XLPE Power cables for Power Generation Distribution	XLPE Power cables upto 19/33 kv grade 33 kv (E) as per IS:7098 - I & II Sizes : Single Core : 25 - 1000 sq. mm Multicore : 25 - 400 sq. mm	Conductor - Circular/Shaped - Aluminum./Copper Insulation - XLPE Innersheath - PVC / HR PVC / FRLS Unarmoured / Armoured - G. S Round Wire / Fial Strip or Aluminium Wire / Fial Strip Outersheath - PVC / HR PVC / FRLS	PVC Cubin direath Amounty of Code Filter Barried Code Ration of Co
Heavy Duty copper cables for Coal Mines	Stranded bright annnealed electrolytic copper conductor, PVC/ XLPE insulated/PVC sheathed upto and including 3.3 kv as per IS: 1554-I&II / IS: 7098 - I&II Sizes: Multicore 25 to 400 sq. mm	Conductor - Circular / Shaped Insulation - PVC / XLPE Innersheath-PVC / HR PVC / FRLS Innersheath-PVC / HR PVC / FRLS With conductivity not less than 75% of the phase Conductor Outer Sheath - PVC / HR PVC / FRLS	Outer shash Annue I shash I sayo Annue I shash I sayo Annue I shash I sayo Yazafati Yazafati Outer Shash Yazafati
Arial Bunched / Bundled required for over head power distribution	PE/XLPE insulated 1.1 kv to 33 kv as per IS:14255 & IS:7098-II	Conductor - Stranded Circular compaced Aluminium Insulation - PE/XLPE Messenger conductor - All Aluminium Alloy-Bare/ Insulated Street Light Cond Stranded Circular Compacted Aluminium, Bare/Insulated	Clare Street Conscient Street Conscient
Copper Control Cables for Power Switch yard Control/ Relay Equipment	Annealed electrolytic copper Conductor, PVC/XLPE insulated, PVC sheathed 650/1100V grade asper IS:1554-1 & IS: 7098-I Sizes: 1.5/2.5 sq. mm upto 61 core 4 & 6 Sq. mm upto 4 core	Conductor - Solid/Stranded, Plain / Tinned Insulation - PVC/HR PVC/LTPE Innersheath - PVC/HR PVC/FRLS/Zero Halogen Unamoured / Armoured - G.S. Round Wire / Flat Strip Outersheath - PVC/HR PVC/FRLS/Zero Halogen Additional Option : Overall shielding with Aduminum mylar tape with 100% coverage & 25 % overlag on laid up cores for state noise rejection.	Dair feam Anton Inne Frank Vendation
Railway Signaling Cables	Annealed Bare Copper conductor, PVC insulated cores laid up PVC sheath as per IRS-S-63/89 RDSO & related specifications Sizes : 1.5 & 2.5 sq. mm upto 61 core 4 & 6 sq. mm upto 4 core	Screened/Inscreened - Aluminium mylar tape Unarmoured/Armoured - G.S. Round Wire / Flat Strip/Gavanised Tape Additional Option : Insulation/Inner/Outer Sheath - PVC Inner/Outer sheath - PVC	Duar fases Annie A
Telecom / Switch board cables for Indoor Telephones	Annealed Copper conductor, PVC Insulated as per DOT TEC Spen No:S/MIP.06/02 Sizes: 0.4 / 0.5 / 0.6 / 0.7 / 0.9 mm	Conductor - Tinned / Plain Insulation - PVC / HR PVC / Nylon Innersheath - PVC/HR PVC/FRIS. Zero Halogen Unarmoured / Armoured - G.S. round wire / Flat Strip Outer Sheath - PVC/HR PVC / FRLS Additional Option - Individual / Overall pair/ Shielding / Screening	Outer brain favour
Coaxial cables for Telcom / Microwave / CATV / MATV industry	Available in specified RG & UR Series as per MIL-C-17 / BS:2316 / IS:5608 / IS: 11967 Sizes: Suitable for Impedance of 50 / 75 / 100 / 125 ohms	Conductor - Plain / Tinned / Copper Clad Steel / Sliver Plated Insulation - Solid / Foam / Semi air spaced Screen - Single / Double braid Sheath - PVC / HR PVC / FRLS / PE.	PE Insulation Shean Brad
Flat cables for Submersible Pumps & Motors	Stranded Plain copper, PVC Insulated & PVC sheathed of 1.1 kv grade as per IS:694 Sizes : 3 core - 1.5 to 50 sq. mm	Insulation - PVC / HR PVC Sheathing - PVC / HR PVC	Breuklion Conductor Sheeth

Cable ranges at a glance

Application	Type & Size	Options		
Instrumentation Signal Cables for Process control & Instrumentation	s for 1100 V grade cables as per Insulation- PVC / HR pvc / PE / Zero H Shielding - Individual Pair / over all pai			
Plexible & Cord Cables for appliances, Machine Tools & Equipment Wiring	Multistrand, flexible, bright annealed electrolytic copper conductor, PVC insulated and sheathed upto 1100V as per IS:194 Sizes: Single, Two, Three or Four core upto 25 sq. mm	Insulation - PVC / HR PVC / FRLS / Zero Halogen Unsheathed/Sheathed - PVC/HR PVC / FRLS / Zero Halogen		
Wiring Cables for electrical industry	Multistrand Flexible, upto 1100V grade PVC Cables as per IS: 694 Sizes: Single core 1.0 - 630 sq. mm	Conductor - Bright Annealed Copper Insulation - PVC/HR PVC / FRLS PVC / Zero Halogen		
Energy Cables for Power Supply to Telephone Exchanges / UPS / Battery Backup / Equipments	PVC Flexible Cables upto 1.1 kv grade as per IS:694 Sizes : 1.0 upto 240 sq. mm Single / Multi Core	Conductor - Stranded / Solid bright annealed Copper Insulation - PVC / HR PVC / FRLS / Zero Halogen		
Air Field Lighting Cables	Stranded plain annealed copper, PVC insulated & PVC sheathed of 5 kV grade Sizes : Single core 6/16 sq. mm and 2 x 6, 16 & 25	Insulation - PVC / XLPE		

Cross Sectional view

Manufacturing of Cables

Cables with Aluminium and Copper conductor and PVC/XLPE insulated are manufactured at Diamond Power Infrastructure Ltd. Registered office: Phase-II. Village: Vadadala, Ta: Savali, Dist.: Vadodara-391520, Guiarat, Essentially cables comprise of conductors. Insulation, Inner-sheath, armour and outersheath. The brief description of the porcess is mentioned as under.

CONDUCTOR

Dicabs Cables are available with both aluminium and copper conductors. It is manufactured with solid/Stranded Circular/ Shaped Aluminium / Copper Conductor, Stranding makes Cables flexible and easy to handle while shaping makes them. compact.

Compaction is provided to all stranded conductor constructions ac under :

- Circular Conductor : With one wire in the centre conductor contains 6, 12, 18, 24, 30... wire layers in either unilay or opposite helical directions. The conductor is sized upto 92% compaction.
- Shaped Conductors: In all multicore cables from 16 Sq. mm size, conductors are "Shaped". Compaction degree in multicore power cables is upto 92%.
- Segmental Conductor: As a special case Dicabs cables of 2500 Sq. mm are made up of segmental conductors.

The conductor is manufactured in equal segments and compacted, then laid together. This reduces A.C. losses in the large sized conductor, which are due to skin and proximity effects.

Dicabs has special construction of conductor to suggest to its customer for meeting their specific need.

Dicabs copper conductor cables are of the same construction that of cables with Aluminium conductor except for high tensile strength, superior conductivity, better flexibility and ease of iointing, copper cables are used in control, instrumentation, winding, submarine, mining and ship wiring etc. applications.

All conductors for Dicabs cables are manufactured strictly in accordance with National and International specifications.

National specifications IS:8130

International specification IEC:60228 / BS:6360

DIELECTRIC INSULATION

Insulation for Dicabs cables is strictly as per National and International specifications.

Dicabs cables are designed and manufactured with PVC/XLPE dielectrics to bear thermal and thermomechanical stresses safely at continuous normal and short circuit temperature conditions.

Dicabs cables are available with both thermoplastic & thermosetting insulations.

- PVC Cables Thermoplastic dielectric

- XLPE Cables Thermo setting dielectric

Dicabs PVC cables use PVC compounds that take care of over load and short circuit current with both coarse & fine protection systems.

Dicabs XLPE cables use XLPE compound with anti oxidant

stabilizers and traces of aromatic polynuclear hydrocarbon. Thus improving electrical treeing characteristics and mechanical strength of insulation.

Dicabs cables are friendly during continuous, emergency and short circuit conditions.

Though there is no change in basic design of Dicabs cables yet the latest manufacturing process gives improved reliability and compactness to cables. The relative thermal expansion during short circuit between dielectric and conductor is therefore limited to minimum both in PVC & XLPE, thus limiting displacement of cores in cables during short circuit.

Insulation for Dicabs Cables are strictly manufactured and applied over conductor in accordance with National and International specifications.:

National Specification IS:5831/IS:7098

International Specifications BS:6746/BS:5467/IEC:60502

SCREENING

XLPE Cables with rated voltage over 3.3 KVshall be provided with conductor and insulation screening as follows:

Conductor Conductor shall be screened with extruded

Screen Semi-conducting compound as per IS:7098 part 2.

Insulation Insulation screening shall consist of non-metalic

Screen

Part in combination with metalic part. Non metalic part shall consist of either semi conducting compound tape applied hellically or extruded layer of semi conducting compound, applied directly over insulation. Over this, metalic part (copper tape) shall be applied hellically with overlap as per IS:7098 part 2.

To avoid the cavities and voids formation in dielectric particularly on bending operation of cable, perfect bonding of insulation and screening is required. To ensure this Dicabs applying conductor screen, insulation and insulation screen (non-metalic part) in one operation through tripple extrusion.

LAYING UP

Cores are tested on line during production both for physical and electrical characteristics. Control is observed within tight tolerance limits for dimensions in case of PVC/XLPE insulation. For multicore cables cores are laid up on our latest laving up machine equipped with sector correction equipment. In case of XLPE insulated cores the same are cured so as to impart the requisite characteristics both electrical and mechanical and then are laid up.

INNER SHEATH

Laid up cables are provided with inner sheath with high quality of PVC which acts as bedding for steel wire / strip armouring. Wherever required, filler cords are provided to maintain the circularity to laid up cables.

Advantages

In Dicabs Cable-polymers used for inner sheath are sifter than insulation or outer sheath & are compatible with temperature ratings of cables & do not have deleteriocus effect on any other component of cable.

Inner sheath is applied either with extrusion or by wrapping. In Dicabs Cables thought the inner sheath is closely applied on the laid up cores, same can be stripped with ease without damaging insulation.

The inner sheath dimensions are maintained strictly in accordance with laid down specification.

Specification For PVC Cables IS:1554 (Part-I&II)
For XLPE Cables IS:7098 (Part-I&II)

Armouring

Mechanical protection to the cable is provided with armouring. Dicabs single core cables are armoured with Aluminium or Aluminium alloy wire/strips, thus avoiding magnetic hysteresis losses on A. C. System.

Multicore cables are provided with galvanised steel wire/strips. Dicabs cables are provided with galvanised wire armouring, where cables are to run vertically and are subjected to stresses. Dicabs Mining cables are armoured with steel wire and tinned copper wires, so as to provide conductivity of armour more than 75% of main conductor of cable

Dicabs cables armour wires/strips are of low resistivity material and meet the requirements of Is: 3975.

and meet the requirements of Is:3975.

Dicabs armoured cables are with almost 95% armour coverage.

Outer Sheath

All Dicabs Cables are provided with PVC/Polymer outer sheath.

Dicabs Cables are manufactured with various characteristic of sheathing compounds.

General purpose sheathing Compound ST1
Heat resistant Compound for sheath (H.R.) ST2

 Fire Retardant Low
 IEC 754 Part I

 Smoke Compound
 IEC 60332 Part I & III

 (FRLS)
 IEEE-383

ASTM-2843 ASTM-2863 to EIL Specn.

Flame Retartant Compound (FR)

 $Ultra\,Voilet\,Radiations\,Resistance\,Compound\,to\,ASTM\,G-53.$

Anti Rodent and Anti Termite Compound.

PVC compounds used for Dicabs Cables are of various grades to meet specifications IS:5831.

In order to be identified, Dicabs Cables have their name embossed/printed/indented on outersheath at regular intervals on the outer sheath of Dicabs Cables, Voltage Grade, cable size, trade name & year of manufacture are embossed, as desire. Cables are sequentially marked for length at every metre throughout its length.

Final Testing

Each Dicabs Cable is tested for all applicable Routine Tests.

From a lot of Cable one cable of each type is tested for Type tests, as per relevant specifications.

Dicabs conduct its testing at DPIL plant at Vadadala for acceptance test as per specification.

Testing of Dicabs Cables are carried out as per National & international Dicabs Work Standards for testing, besides applicable standards.

Advantages of PVC Cables

- A non-hygroscopic insulation almost unaffected by moisture.
- 2. Non-migration of compound permitting vertical installation.
- Complete protection against most forms of electrolytic and chemical corrosion.
- A tough and resilient sheath with excellent fire resisting qualities.
- Good ageing characterstics.
- Not affected by vibration.

Advantages of XLPE Cables

- Higher Current Rating.
- Higher Short Circuit Rating.
- Longer Service Life.
- For a short time it can withstand maximum 130°C and is favourable to endure short circuit stresses.
- It is less sensitive to the setting of the network protection.
- Because of the thermosetting process taking place due the effect of cross linking, the crack resistance is increased.
- Due to the chemical cross-linking internal stresses are reduced. Consequently the material is less sensitive during manufacturing process to the setting of the cooling gradient.
- The thermal resistivity of cross-linked material is favourably low, compared to thermoplastic material.
- 9. The low dielectric loss is a significant advantage.
- The excellent mechanical features of the insulation improves the protection against external effects.
- The resistance of the XLPE to acids, alkalies is outstanding and is often compensating the adverse environmental influences.

Criteria for Selection Of Power Cables

The following factors should be taken in to account while selecting the correct size and of cables

- SYSTEM VOLTAGE What is the system voltage and the type of system? Single phase, Three phase, earthed or unearthed AC or DC?
- CURRENT CARRYING CAPACITY The current rating is the main and basic criterion. Tables give the carrying capacity of various types and sizes of cables, under different conditions of laying. These should be considered before the correct size laying as under:
 - 2.1: Depth of Laying.
 - 2.2: Ambient temperature of ground or Air.
 - 2.3: Soil resistivity.
 - 2.4: Whether one or more groups of the cables are laid together.
 - 2.5: Any heating source near cable run.
- 3. MODE OF INSTALLATION The mode of installation determines the type of cable to be used. Electricity regulations require the, use of Armoured cables for underground applications. In general, Armoured cables are recommended where there is any chance of mechanical damage. If subsequent mechanical damage after laying cables is not likely, cheaper Unarmoured cables can be used.
- PERMISSIBLE VOLTAGE DROP For longer length of cable run it is necessary to check that
 with the cable size selected, the voltage drop does not exceed the prescribed regulations limit. A higher size
 cable may have to be used if the voltage drop limits are not to be exceeded.
- LOAD CHARACTERISTIC One should take into account the characteristics of load. It is essential to ensure
 that the cable selected is capable of handing temporary overloads. DICABS cables permit a conductor
 temperatures of upto 130°C under temporary overload conditions. (If possible, the complete load cycle may
 be furnished).
- SHORT CIRCUIT RATING Short circuit rating depends on the expected level and the
 expected duration of the short circuit. In certain cases a large size of cable than the cable required for normal
 full load may be needed. The cables with high KVA capacity are expected to carry short circuit currents of high
 magnitude, "DICABS" permit a short circuit temperature of 160°C for PVC & 2500C for XLPE Cable.
- 7. ECONOMIC CONSIDERATIONS The most economical Construction and size of cable persistent with current carrying capacity and laying condition has to be selected. A detailed study of 3 or 4 approximate sizes is made Actual running costs are worked out taking into consideration I*R loss and interest, depreciation of the total cable cost. The size, which gives minimum running costs, is to be preferred.
- Type of installations: For implementing right choice and selection of cables will depend on atmospheric conditions of area, temperature variations, type of place where it is to be used, type of industrieschemical/mining/shiping marine/fire hazardous etc.

Special Production & Testing Capabilities at

Diamond Power Infrastructure Limited

The "DICABS" HV XLPE cables are manufactured in the most sophisticated & modern plant at DPIL, Vadadala (Near Vadodara) for HV Cables upto 550 KV. The unit is established in total area of approx 260 Acres.

Production process of HV XLPE cables requires high level of perfection at all stages of manufacturing. The extrusion should be Smooth, Homogeneous and free from undesirable voids and contaminations. Material handling system are planned precisely to ensure minimum contamination.

This is ensured by the Triple Extrusion using single common Crosshead Extrusion technique and DRY CURE INERT GAS CURED CROSS LINKING PROCESS USING CCV LINE.

The CCV line is of GERMAN Technology from Maschinenbay SCHOLZ GMBH & Co., which is the pioneer in this product worldwide. CCV line has got online touch free sag control system for best accuracy.

For precisionness in online measuring & securing , X Ray - 8000 NXT is installed with latest Technology from SIKORA, GERMANY. It facilitates precise control over Diameters of insulation & screenings and also controls eccentricity.

For Dry curing purpose the latest technology of NITROGEN Generator Plant is installed with sufficient volume of safety stock arrangement. For wet cooling, DM water plant with 40 TR chiller plant is installed.

HV XLPE cables are manufactured under strict quality control. Quality is ensured through a well structured Quality Assurance Plan as per IS & ISO system covering Raw Materials, In Process Quality Checks and at Finished stages.

The cables are subjected to TYPE & ROUTINE test in accordance with IS 7098 Pt2, IEC: 60502 IEC 60840 & IEC 62067 or other relevant International Standards.

The most modern testing facilities are available with shielded room size 3000 sq mtrs. The most precise equipments for Partial Discharge; AC & DC High Voltage Test, Impulse Test, Heating cycle & Ten Delta test. etc. are imported from World Famous suppliers.

For all other followed processes, all machineries are installed having latest technology & with high production features ensuring all quality measures under NABL Approved lab.

For storage of finished cable, extra care is taken. DPIL is having around $8500 \, \text{sq}$ mtrs. total storage area & approx $5000 \, \text{sq}$ mtrs. covered storage area with Trimix flooring.

Salient Features V.C.V / C.C.V Line Manufacturing Process

V.C.V Line	C.C.V Line				
The system adopted for insulation of the XPLE Cable is VCV and N ₂ gas is used for cross-linking, and the line is extruded in a vertical type.	The system adopted for insulation of the super tension XLPE cable is CCV and N2 is used for cross-linking, and the line is extruded in a catenary type.				
The outstanding characteristics of the XPLE Cable manufactured in application of this system are as under:	The outstanding characteristics of the super tension XLPE Cable manufactured in application of this system are as under:				
1.The insulation has no eccentrically.	The insulation has no eccentrically.				
2. The cross-linking by use of N ₂ gas guarantees excellent characteristics of the insulation.	The cross-linking by use of N _e gas guarantees excellent characteristics of the insulation.				
The simultaneous extrusion of the inner and outer semi-conducting layers and the insulation prevents treeing and other irregularities.	The simultaneous extrusion of the inner and outer semi-conducting layers and the insulation prevents treeing and other irregularities.				
Uniformity of quality is maintained of all products, as the manufacturing processes are controlled by computer.	Uniformity of quality is maintained of all products, as the manufacturing processes are controlled by computer.				

Advantages of CCV line Dry Cure Process over Wet cure sioplas Process for HV cables.

S. S.	Advantages of CCV line (Dry cure)	Disadvantages of Sioplas Line (Wet cure)
-	The chemistry of cross linking leads of C-C linkages.	The chemistry of cross linking leads to C-Si-O-Si-C linkage.
0	No wet atmosphere (Water/Steam) is there till the cores are cross linked	The cross linking takes place in wet environment
က	Post extrusion to cooling, the cores remain in enclosed tube	The cores are cooled in water, post extrusion.
4	Provides online cross linking & curing.	Curing is restricted to insulation only, semi conducting layers are of y thermoplastic compound based.
2	Provides the possibility to manufacture cores continuously for days without lot changing	Curing is done by batch process and because of batch process there is a limitation to drum length of the cable.
9	There is no manual handling of cores till cross linking and cooling are over.	Each stage require manual and safe handling.
7	Possible to manufacture 33 kV and above ratings of cable having desired concentricity and extent of cross linking	Because of batch curing, extremly difficult to crossing cores beyond 33 kV, chances of non uniform cross linking can not be ruled out.
80	Chances of void formation is very negligible for 33 kV and above ratings of cables.	

Key Manufacturing Process in HV Cable Manufacturing

Dry Cure Process

- · The chemistry of cross linking leads to C-C linkage.
- No Wet atmosphere (Water/Steam) is there till the cores are cross linked.
- Post extrusion to cooling, the cores remain in enclosed tube.
- Provides online cross linking.
- Provides the possibility to manufacture cores Continuously for days without lot changing.
- There is no manual handling of cores till cross linking and cooling are over.
- Uses a very expensive manufacturing plant and needs to be imported.
- Losses are more in case of malfunctioning of equipment/process problem.
- · Requires huge space to install the plant.
- · Cure simulation is required to satisfy co-cross linking of three layers.
- Chances of void formation is very negligible for 33kV and above ratings of cables.
- It requires the installation of a Nitrogen gas generating plant to feed Nitrogen gas for curing.
- Possible to manufacture 33kV and above ratings of cable having desired concentricity and extent of cross Linking.
- Curing is done in a pressurized tube, calling for additional safety measures to be taken

Key Manufacturing Process in HV Cable Manufacturing

Wet (Steam/Hot Water) Cure Process.

- The Chemist, y of Cross linking leads to C-Si-O-Si-C linkage.
- The cores are cooled in water, post extrusion.
- · The cross linking takes Place in a wet environment.
- Curing is done by batch process.
- . Because of batch process, there is a limitation to drum length of cable.
- · The plant and machinery are not very expensive.
- Losses are less in case of equipment/process malfunctioning.
- This does not require very large factory space.
- The process requires an associated curing arrangement in the form of steam chamber or water tank etc.
- Curing is restricted to insulation only, semi Conducting layers are of thermoplastic compound based.
- Because of batch Curing, extremely difficult to crossing Cores. beyond 33 kV. Chances of nonuniform cross linking cannot be ruled out.
- Maintenance expenses are comparatively lower.

CORE INPUT DRUM

CONDUCTOR INPUT DRUM

ARRANGEMENT OF A CONTINUOUS CATENARY VULCANISATION (CCV) LINE 0 SEAL COOLING SECTION VULCANISING PRESSURE TUBE THREE EXTRUDERS / TRIPLE HEAD PREHEATING TUBE 0 DRIVEN CAPSTAN

MANUFACTUREING PROCESS FLOW CHART FOR HV CABLE (UPTO 33KV)

TEST GUIDE

List of Tests as per IS:1554(Part - I) : 1988, IS:1554 (Part-II) : 1988, IS:7098 (Part-I) : 1988 and IS : 7098 (Part-II) : 2011

1. Routine Tests:

- a) Conductor Resistance Test
- b) High Voltage Test
- c) Armour Resistance Test for mining Type Cables
- d) Partial Discharges test (for H.T. Screened cable)

2. Type Tests:

- a) Tensile Test (for Aluminium Conductor)
- b) Wrapping Test (for Aluminium Conductor)
- c) Annealing Test (for Copper Conductor)
- d) Conductor Resistance Test
- e) Test for Armour Wires/Strips
- f) Test for thickness of Insulation & Sheath
- g) Physical Test for Insulation & Outer Sheath
- h) Test for Bleeding & Blooming of Pigments
- i) Insulation Resistance Test
- i) High Voltage Test
- k) Flammability Test
- Hot Set Test (For XLPE Insulation only)
- m) Partial Discharge test (for H.T. Screened cable)
- n) Bending test (for H.T. Screened cable)
- Dielectric Power factor test (for H.T. Screened cable with rated voltage 6.35/11KV & above)
- p) Heating cycle test (for H.T. Screened cable)
- q) Impulse withstand test (for H.T. Screened cable)

3. Acceptance Tests:

- a) Tensile Test (For Aluminium Conductor)
- b) Wrapping Test (For Aluminium Conductor)
- c) Annealing Test (For Copper Conductor)
- d) Conductor Resistance Test
- e) Test for thickness of Insulation & Sheath
- f) High Voltage Test
- g) Insulation Resistance Test
- h) Tensile Strength & Elongation at break test for Insulation and Sheath
- i) Hot Set Test (for XLPE Insulation only)
- j) Partial Discharge test (for H.T. Screened cable)

Optional Tests: Cold Bend

- a) Cold Bend Test
- b) Cold Impact Test
- Armour Resistance Test (for other than Mining Type Cables)

5. Special Tests (As Applicable):

- a) Oxygen Index Test as per ASTMD 2863-77
- b) Temp. Index Test as per ASTMD 2863-77
- c) Smoke Generation Test as per ASTMD 2843-77
- d) Acid Gas Generation Test as per IEC 754-1
- Flammability Test as per IEC 332-1, IEE-383, SS-4241475 Class F3 and IEC - 332-3

f) Water absorption test (by Electrical Method)

- g) Ultra violet resistance to ASTM-G-53
- h) Die electric Strength retention test
- i) Test for Antirodent & Antitermite property

For selection of a cable, a first hand knowledge of the system in which the cable is to be used, and the installation conditions under which the cable has to operate, is necessary. A knowledge of statutory restrictions and the manufacturing facilities available in the country will help in finding out as to what type of cable will be available for particular usage. The environmental conditions under which the cable has to operate will decide its protective ocvering. Thus once voltage grade of the cable, number of cores, conductor material, type of insulation and protective coverings are known, size of conductor remains to be decided. The first and foremost criteria for the size of conductor is continuous current rating for the present load. There after the same should be checked for short circuit, voltage drop, over load capacities and future expansions. Once decided the selection of next higher size compared to what is essential for the requirement, will always be worthwise.

Economic considerations are also necessary.

(for voltages above 3.3 KV).

INFORMATION REQUIRED WITH ENQUIRY & ORDER

The following information should be included in an enquiry:

- i) Voltage Grade.
- ii) Whether cable is to be used on Earthed or Unearthed system
- iii) Type of installation whether in air or in ducts or in ground.
- iv) If cables are grouped together, then number of cables in group and vertical and horizontal spacing between them.
- v) Required value and duration of short circuit current.

Following further informations are also required for offering the exact type of cable for any specific purpose:

- a) The normal ambient or operating temperature.
- The maximum temperature to which the PVC will be exposed and the duration and frequency of such exposures.
- The material with which the PVC will be in contract i.e. oil, gases, acids, alkalies etc. at normal and maximum temperature.
- d) If special flame retardent property is required.
- e) If any special electrical characteristics needed.

Scope

- a) Type of Cables (H.T)
 - 1) Single-core unscreened, unarmoured (but-non-magnetic metallic tape covered);
 - 2) Single-core Screened, unarmoured;
 - 3) Single-core armoured (non-magnetic) Screened or unscreened;
 - 4) Three-core armoured, Screened or unscreened.
- b) Voltage Grade (Uo/U)
 - 1) Earthed System 1.9/3.3 kv, 3.8/6.6 kv, 6.35/11 kv, 12.7/22 kv and 19/33 kv.
 - 2) Unearthed System-3.3/3.3 ky and 11/11 ky.

Note 1 Cable of 6.35/11 ky grade (earthed System) are suitable for use on 6.6/6.6 ky (unearthed System) also.

Note 2 The Cable Conforming to this standard may be operated Continuously at a power frequency voltage 10 percent higher than rated voltage.

Note 3 Under Rule 54 of the Indian Electricity Rules 1956, in Case of high Voltage, the permissible Variation of declared Voltage at the point of Commencement of Supply is Percent.

- 1.2 These Cables are suitable for use where combination of ambient temperature and temperature-rise due to load results in conductor temperature not exceeding 90°C under operation and 250°C under short-circuit conditions.
- 1.3 Armoured Cables up to 11 kv grade specified in this standard are suitable for use in mines also. However, for such Cables, additional requirements have been included, wherever necessary (3.1.1, 16.5 and 20.2).

IS:7098 (Part 2) 2011

- 2.5 Earthed System An electric system Which fulfils any of the following conditions:
- a) Neutral-point or the mid-point connection is earthed in such a manner that, even under fault conditions, the
 maximum voltage that can occur between any conductor and the earth does not exceed 80 percent of the
 nominal system voltage;
- b) The neutral-point or the mid-point connection is not earthed but a protective device is installed which accidentally becomes earthed; or
- c) In case of ac systems only, the neutral-point is earthed through an arc suppression

Coil with arrangement for isolation within 1 h of occurrence of the fault for the non-radial field cables and within 8 h for radial cables, provided that the total such periods in a year dose not exceed 125 h.

 $2.6\,Unear the d\,System\,\,An\,electric\,system\,which\,dose\,not\,fulfil\,the\,requirement\,of\,the\,ear the d\,system\,(See\,2.5).$

Core Identification

13.1 Core identification for three core cables shall be as follows:

Voltage Grade kv	Method of Identification			
19/33 and 33/33	a) Different colouring of XLPE insulation, b) Coloured strips applied on the cores,or d) By numerals (1,2,3) either by applying numbered strips or by printing on the cores.			
38/66,635/11,11/11,127 and 19/33	a) Coloured strips applied on the cores,or b) By numerals (1,2,3) either by applying numbered strips or by printing on the cores.			

13.1.1 For identification by different colouring of XLPE insulation, or by using coloured strips, red, yellow and blue colours respectively shall be used to identify phase conductors.

High Voltage Test

- 19.7.1 Type/Acceptance Test The cable shall withstand without breakdown an ac voltage to Uo when applied to the sample between conductor and screen/armour (and between conductors in case of unscreened cable). The voltage shall be gradually increased to the specified value and maintained for a period of 4 hours.
- 19.7.2 Routine Test The cables shall withstand without any failure, the test voltages given below, when applied for a period of five minutes for each test connection.

VOLTAGE GRADE	TEST VOLTAGE				
	Between Conductors And Screen/Armour Between Conductors				
kv	kv (rms)	kv (rms)			
19/33	10	10			
33/33					
3.8/6.6	13				
635/11	21	-			
11/11	35	-			
12:7/22	42	-			
19/33	63				

Cable Code (IS 7098 P-2) - The following code shall be used for designating the Cable :

Sr.No.	Constituent	Code Letter		
i)	Aluminium Conductor	A		
ii)	XLPE insulation	2X		
iii)	Steel round wire armour	W		
iv)	Non-magnetic round wire armour	Wa		
v)	Steel Strip armour	F		
vi)	Non-magnetic Strip armour	Fa		
vii)	Double steel round wire armour	WW		
viii)	Double steel strip armour	FF		
ix)	PVC outer sheath	Y		

Note :- No code letter for conductor is required when the conductor material is copper.

CORE IDENTIFICATION:

Red, Black, Yellow or Blue.
Red and Black.
Red, Yellow, and Blue.
Red, Yellow, Blue, and Black.
Red, Yellow, Blue, Black and Grey.
Two adjacent cores, (counting and directional core) in each layer, Blue and Yellow respectively and remaining cores Grey

For reduced neutral conductors, the core shall be black.

In case of Aerial Bunch Cable's are identified by embossed ridges along the length, 1, 2 and 3 as phase 1, 2 and 3 respectively where as ioculators is concerned.

INNER SHEATH

Cables of two or more cores have a common inner sheath. The minimum thickness of inner sheath is 0.03-mm upto laid up diameter of 25 mm.

ARMOURING

Where the calculated diameter of inner sheath doesn't exceed 13 mm the ARMOUR is of round galvanized steel wires and for calculated diameter of inner sheath above 13 mm flat qalvanized steel strips are used.

OUTER SHEATH

The outer is of suitable grade PVC compound in black color.

SHORT CIRCUIT RATINGS SHORT CIRCUIT RATING OF CABLES (KILO AMPS)

Nominal Area	PVC	CABLES	HR PVC CABLES			
of Conductor (sq. mm.)	Copper	Aluminium	Copper	Aluminium		
1.5	0.172					
2.5	0.287					
4	0.46	0.303	0.417	0.276		
6	0.69	0.455	0.625	0.414		
10	1.15	0.758	1.04	0.69		
16	1.84	1.21	1.64	1.10		
25	2.87	1.89	2.60	1.72		
35	4.02	2.65	3.65	2.41		
50	5.75	3.79	5.21	3.45		
70	8.05	5.30	7.29	4.83		
95	10.92	7.20	9.90	6.55		
120	13.79	9.09	12.5	8.28		
150	17.24	11.36	15.63	10.35		
185	21.26	14.02	119.27	12.76		
240	27.59	18.18	25.0	16.55		
300	34.48	22.73	31.25	20.69		
400	45.98	30.30	41.67	27.59		
500	57.47	37.88	52.08	34.48		
630	72.41	47.73	65.63	43.45		
800	91.95	60.61	83.33	55.17		
1000	114.94	75.76	104.17	68.97		

- Max. Conductor temperature before short circuit for normal PVC 70°C, for HR PVC 85°C
- 2. Max. Conductor temperature short-circuit 160°C.
- 3. Max. duration of short-circuits 1 second.

Formula for calculating the short-circuit rating for other duration.

Where I₁= Short circuit rating for one second.

Ik= Short circuit rating for 'K' second.

K= Duration in seconds.

(The above formula is valid for K from 0.2 to 5 second)

Constants are tabulated below for different duration of short circuit :

Duration of short circuit in seconds	1 cycle =0.02 seconds	2 cycle =0.04 seconds	5 cycle =0.01 seconds	10 cycles =0.2 seconds	25 cycles =0.5 seconds	50 cycles =1.0 seconds	2 seconds	3 seconds	4 seconds	5 seconds
Short circuit constant per unit area	536	378	239	169	107	75.7	53.0	43.6	37.8	34.0

Example: Short circuit of 150 sq. mm conductor area with a circuit duration of 0.5 seconds = 150 x 107 = 16050 amps.

REACTANCE & CAPACITANCE OF 1.1 Kv & HP PVC CABLES.

REACTANCE

APPROXIMATE REACTANCE AT 50 HZ (OHMS/KM) 1.1 kV PVC AND HR PVC CABLES

Nominal		PVC and Hr PV	C Cables
Area	Single	Core	Multicore
of Conductor (sq. mm)	Unarmored	Armoured*	
1.5	0.157		0.110
2.5	0.145		0.106
4	0.136		0.102
6	0.128		0.0962
10	0.118		0.0908
16	0.110		0.0859
25	0.107	0.122	0.0849
35	0.106	0.116	0.0823
50	0.0973	0.110	0.0765
70	0.0924	0.107	0.0769
95	0.0900	0.103	0.0766
120	0.0880	0.0989	0.0741
150	0.0862	0.0960	0.0743
185	0.0857	0.0950	0.0742
240	0.0837	0.0929	0.0737
300	0.0828	0.0922	0.0733
400	0.0810	0.0893	0.0729
500	0.0807	0.0890	0.0732
630	0.0803	0.0876	0.0731
800	0.0782	0.0862	
1000	0.0772	0.0849	

^{*} Wire Armoured

CAPACITANCE APPROXIMATE CAPACITANCE (MICROFARADS/KM) 1.1 kV PVC AND HR PVC CABLES

Nominal		PVC and HF	PVC Cable	es
Area of	Single	Core	Two core	Three, three
(sq. mm.)	Unarmored	Armoured*		and a half and four core
1.5	0.43		0.12	0.35
2.5	0.52		0.13	0.41
4	0.57		0.14	0.46
6	0.67		0.16	0.52
10	0.83		0.18	0.63
16	0.97		0.19	0.82
25	1.00	0.83	0.22	0.86
35	1.15	0.95	0.24	0.98
50	1.26	0.95	0.24	1.00
70	1.32	1.12	0.26	1.16
95	1.36	1.17	0.26	1.18
120	1.49	1.28	0.28	1.31
150	1.52	1.32	0.28	1.28
185	1.47	1.30	0.28	1.30
240	1.54	1.37	0.28	1.34
300	1.60	1.40	0.29	1.37
400	1.70	1.50	0.29	1.43
500	1.63	1.46	0.29	1.41
630	1.64	1.45	0.29	1.42
800	1.87	1.65		
1000	2.05	1.76		

^{*} Wire Armoured

Capacitive Charging Current for XLPE Cable at rated voltage and 50 Hz, A/km per phase

Cross			R	ated vol	tage, kv			
Section mm ²	10	20	36(SS)	30	45	66	110	132
25	0.4	0.5						
35	0.5	0.5						
50	0.5	0.6						
70	0.5	0.7						
95	0.5	0.8	1.2	0.9	1.2	1.5		
120	0.6	0.9	1.3	1.0	1.3	1.6		
150	0.7	0.9	1.5	1.0	1.4	1.7		
185	0.7	1.0	1.5	1.1	1.5	1.8	2.4	2.4
240	0.8	1.1	1.7	1.2	1.6	2.0	2.6	2.6
300	0.9	1.2	1.9	1.3	1.8	2.2	3.0	3.1
400	1.0	1.3	2.1	1.4	2.0	2.4	3.2	3.4
500	1.1	1.5	2.3	1.6	2.2	2.6	3.6	3.8
630	1.2	1.6	2.5	1.8	2.5	3.1	4.0	4.1
800	1.4	1.9	2.6	2.0	2.7	3.8	4.4	4.8
1000	1.5	2.0	3.1	2.2	2.9	4.2	4.8	5.0
1200	1.6	2.1	3.3	2.3	3.7	4.6	5.0	5.3
1400	1.8	2.3	3.5	2.4	3.9	4.8	5.4	5.7
1600	1.9	2.5	3.7	2.6	4.1	5.2	5.6	6.0
2000	2.1	2.6	4.1	2.9	4.5	5.7	6.2	6.5

Induc	tance of three-core XLPE cab mH/km per phase	iles,				
Cross Section	Rated Voltage, kv					
mm²	IEC10 SS12	IEC 20 SS 24				
10	0.45					
16	0.41					
25	0.38	0.43				
35	0.36	0.41				
50	0.35	0.39				
70	0.33	0.37				
95	0.31	0.35				
120	0.30	0.33				
150	0.29	0.32				
185	0.28	0.31				
240	0.27	0.30				
300	0.27	0.30				

APPROXIMATE REACTANCE AT 50 HZ (OHMS/KM) 1.1KV XLPE CABLES

Nominal Area		XLPE CABLES (90°C)	
Of Conductor	Si	ngle Core	Multicore
(sq.mm)	Unarmoured	Armoured*	
1.5	0.155	-	0.107
2.5	0.142	-	0.0985
4	0.132	-	0.0927
6	0.123	-	0.0884
10	0.114	0.134	0.0837
16	0.108	0.125	0.0808
25	0.103	0.120	0.0805
35	0.0986	0.114	0.0783
50	0.0937	0.108	0.0750
70	0.0900	0.102	0.0740
95	0.0865	0.100	0.0724
120	0.0841	0.0968	0.0712
150	0.0831	0.0941	0.0716
185	0.0836	0.0932	0.0718
240	0.0813	0.0900	0.0710
300	0.0795	0.0881	0.0705
400	0.0787	0.0873	0.0704
500	0.0779	0.0859	0.0702
630	0.0765	0.0843	0.0698
800	0.0755	0.0826	-
1000	0.0752	0.0829	-

TECHNICAL DETAIL FOR DICABS 1.1 KV SINGLE CORE, AL/COPPER COND., PVC INSULATED, UN-ARMOURED CABLES

Cable Code : AYY/YY

PHYSICAL PARAMETERS

REF SPEC: IS: 1554PART-1

SIZE	Min	imum	Nominal	Nominal	Approx.	Approx. Weig	ht of cable in kg / km
cross-sectional area (Sq MM)		Strand in ductor Cu	Thickness of Insulation) (mm)	Thickness of outer sheath (mm)	Overal Diameter (mm)	With Al Conductor AYY	With Copper Conductor
4		1/7	1.0	1.8	8	80	105
6	1	1/7	1.0	1.8	9	100	135
10	1	6	1.0	1.8	10	120	180
16	6	6	1.0	1.8	11	160	260
25	6	6	1.2	1.8	13	210	365
35	6	6	1.2	1.8	14	250	460
50	6	6	1.4	1.8	16	300	610
70	12	12	1.4	1.8	17	400	830
95	15	15	1.6	1.8	19	500	1100
120	15	18	1.6	2.0	21	600	1350
150	15	18	1.8	2.0	23	750	1680
185	30	30	2.0	2.0	25	900	2050
240	30	34	2.2	2.0	28	1100	2600
300	30	34	2.4	2.0	30	1350	3200
400	53	53	2.6	2.2	35	1700	4200
500	53	53	3.0	2.2	38	2150	5250
630	53	53	3.4	2.4	43	2750	6650
800	53	53	3.4	2.4	48	3300	8250
1000	53	53	3.4	2.6	52	4100	10300

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: -6 & 10 SQMM-Solid circular, 16 sq. mm & above : Standed compacted circular ~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm & above :

Stranded compacted circular

OUTER SHEATH: PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS : FR TYPE / FRLS TYPE

INSULATION : PVC Type A of IS: 5831/OPTION : HR PVC (Type-C of IS-5831) Colour : Black

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement. - Tabulated approx. netwt. of cables are only guidelines for transportation, loading & unloading purpose

- Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal *Cur	rent Rating	in Amp	s	Short Circu	it Current
cross-sectional	Resist	ance at	Resis	tance at	at 50HZ	of cable	WithA	luminiun	cond.	With	Copper	cond.	Rating for 1 S	
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu										
4		4.61		5.53	0.140	0.58				39	38	35	0.304	0.460
6	4.61	3.08	5.53	3.70	0.127	0.68	39	37	35	49	48	44	0.456	0.690
10	3.08	1.83	3.70	2.20	0.118	0.83	51	51	47	65	64	60	0.760	1.150
16	1.91	1.15	2.29	1.38	0.110	1.01	66	65	64	85	83	82	1.220	1.84
25	1.20	0.727	1.44	0.87	0.105	1.05	86	84	84	110	110	110	1.900	2.88
35	0.868	0.524	1.04	0.63	0.100	1.22	100	100	105	130	125	130	2.660	4.03
50	0.641	0.387	0.769	0.464	0.098	1.22	120	115	130	155	150	165	3.800	5.75
70	0.443	0.268	0.532	0.322	0.091	1.43	140	135	155	190	175	205	5.320	8.05
95	0.320	0.193	0.384	0.232	0.088	1.47	175	155	190	220	200	245	7.220	10.90
120	0.253	0.153	0.304	0.184	0.086	1.62	195	170	220	250	220	280	9.120	13.80
150	0.206	0.1240	0.247	0.1488	0.085	1.62	220	190	250	280	245	320	11.40	17.30
185	0.164	0.0991	0.197	0.1189	0.084	1.62	240	210	290	305	260	370	14.10	21.30
240	0.125	0.1754	0.151	0.0912	0.082	1.72	270	225	335	345	285	425	18.20	27.30
300	0.100	0.0601	0.122	0.0733	0.080	1.74	295	245	380	375	310	475	22.80	34.50
400	0.0778	0.0470	0.0961	0.0580	0.080	1.81	325	275	435	400	335	550	30.40	46.00
500	0.0605	0.0366	0.0759	0.0459	0.079	1.86	345	295	480	425	355	590	38.00	57.50
630	0.0469	0.0283	0.0610	0.0368	0.077	1.87	390	320	550	470	375	660	47.90	72.50
800	0.0367	0.0221	0.0503	0.0303	0.077	1.98	450	380	610	530	425	725	60.80	92.00
1000	0.0291	0.0176	0.0422	0.0255	0.076	2.20	500	415	680	590	740	870	76.00	115.00

TECHNICAL DETAIL FOR DICABS 1.1 KV TWO CORES. AL/COPPER COND., PVC INSULATED, UN-ARMOURED CABLES

Cable Code: AYY/YY

DHYSICAL DADAMETERS

REF Specification: IS: 1554 PART-1

SIZE Cross-sectional	Minir No of S		Nominal Thickness of	Minimum thickness of	Normal thick. of OUTER	Approx. Overall		x. Net Wt e (Kg/KM)
area (Sq MM)	Cond	luctor Cu	Insulation (mm)	inner Sh. (mm)	Sheath (mm)	Diameter (mm)	With Al cond AYY	With Cu Cond YY
4		1/7	1.0	0.30	1.80	14	240	290
6	1	1/7	1.0	0.30	1.80	17	300	370
10	1	6	1.0	0.30	1.80	18	400	520
16	6	6	1.0	0.30	1.80	17	430	630
25	6	6	1.2	0.30	2.00	19	450	750
35	6	6	1.2	0.30	2.00	21	550	980
50	6	6	1.4	0.30	2.00	24	700	1300
70	12	12	1.4	0.30	2.00	26	850	1700
95	15	15	1.6	0.40	2.20	30	1150	2300
120	15	18	1.6	0.40	2.20	32	1300	2800
150	15	18	1.8	0.40	2.40	34	1600	3450
185	30	30	2.0	0.50	2.40	38	2000	4300
240	30	34	2.2	0.50	2.60	42	2500	5500
300	30	34	2.4	0.60	2.80	46	3000	6700
400	53	53	2.6	0.70	3.20	52	3800	8750
500	53	53	3.0	0.70	3.40	54	4800	11000
630	53	53	3.4	0.70	3.80	65	6000	13800

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond:-6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped ~Copper. Cond:-4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. MM; Stranded compacted circular,

OUTER SHEATH : PVC TYPE ST-1 OF IS : 5831 '--- OPTIONS : PVC Type ST-2 of IS: 5831/FR type/FRLS TYPE

-16sgmm & above : Stranded compacted shaped

INSULATION : PVC Type A of IS: 5831/OPTION : HR PVC (Type-C of IS-5831) Colour : Red & Black

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

~ Tabulated approx. netwt. of cables are only guidelines for transportation, loading & unloading purpose...

- Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App.Reactance	App.Capetiance		Normal	* Curren	t Rating in	Amps		Short Circu	uit Current
cross-sectional	Resista	ance at	Resis	tance at	of cable at 50HZ	of cable	With Aluminium cond.		With Copper Cond.			Rating for 1 sec.duration		
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
03.02 03	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.53	0.098	0.23	32	27	27	41	35	35	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	40	34	35	50	44	45	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	55	45	47	70	58	60	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	70	58	59	90	75	78	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	90	76	78	115	97	105	1.900	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	110	92	99	140	120	125	2.660	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	135	115	125	165	145	155	3.800	5.750
70	0.443	0.268	0.532	0.322	0.076	0.56	160	140	150	205	180	195	5.320	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	190	170	185	240	215	230	7.220	10.90
120	0.253	0.153	0.304	0.184	0.075	0.63	210	190	210	275	235	265	9.120	13.80
150	0.206	0.1240	0.247	0.1488	0.074	0.63	240	210	240	310	270	305	11.40	17.300
185	0.164	0.0991	0.197	0.1189	0.074	0.64	275	240	275	350	300	350	14.10	21.280
240	0.125	0.0754	0.151	0.0912	0.073	0.67	320	275	325	405	345	410	18.20	27.600
300	0.100	0.0601	0.122	0.0733	0.073	0.68	355	305	365	450	385	465	22.80	34.500
400	0.0778	0.0470	0.0961	0.0580	0.072	0.71	385	345	420	490	485	530	30.40	46.000
500	0.0605	0.0366	0.0759	0.0459	0.072	0.70	425	380	475	540	460	605	38.00	57.500
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	465	415	540	640	550	785	47.90	72.550

TECHNICAL DETAIL FOR DICABS 1.1 KV

THREE CORES, AL/COPPER COND., PVC INSULATED, UN-ARMOURED CABLES

Cable Code: AYY/YY PHYSICAL PARAMETERS

Ref Specification: IS:1554 PART-1

SIZE Cross- -sectional		n No of nds in	Nominal thick. Thickness of	Minimum thickness of	Nominal thick. of outer	Approx. Overall		x. Net Wt e (Kg/KM)
are (sqmm)	Cond	luctor Cu	Insulation) (mm)	inner Sh. (mm)	Sheath (mm)	Diameter (mm)	With Al cond AYY	With Cu Cond
4		1/7	1.0	0.30	1.80	16	270	340
6	1	1/7	1.0	0.30	1.80	18	360	470
10	1	6	1.0	0.30	1.80	19	440	650
16	6	6	1.0	0.30	1.80	19	460	730
25	6	6	1.2	0.30	2.00	22	620	1080
35	6	6	1.2	0.30	2.00	24	740	1400
50	6	6	1.4	0.30	2.00	27	940	1870
70	12	12	1.4	0.40	2.20	30	1200	2500
95	15	15	1.6	0.40	2.20	34	1600	3350
120	15	18	1.6	0.40	2.20	37	1900	4100
150	15	18	1.8	0.50	2.40	40	2300	5100
185	30	30	2.0	0.50	2.60	44	2750	6200
240	30	34	2.2	0.60	2.80	50	3500	7950
300	30	34	2.4	0.60	3.00	55	4300	9900
400	53	53	2.6	0.70	3.40	62	5450	12800
500	53	53	3.0	0.70	3.60	69	6900	16200
630	53	53	3.4	0.70	4.00	77	8700	20400

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: - 6 & 10 sqmm - Solid circular, 16 sq. mm & above : Standed compacted shaped

~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sqmm Stranded compacted circular,

16 sqmm & above : Stranded compacted shaped

INSULATION: PVC Type A of IS:5831/OPTION: HR PVC (Type-C of IS-5831), Colour : Red. Yellow & Blue INNER SHEATH: PVC as per IS: 1554PT-1 OUTER SHEATH: PVC type st-1 of

IS:5831 '----OPTIONS : PVC TYPE ST-2 OF IS:5831/FRTYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

- Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose..

- Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICA	L PAR	AMET	ERS											
SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	pp Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circu	it Current
Cross-sectional	Resist	ance at	Resis	tance at	at 50HZ	of cable	With A	luminiun	n cond.	ond. With Copper cond. Rating for 1 Sec.		ec. duration		
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	round Duct Air Ground D		Ground Duct Air		in K. A	mps	
	Al	Cu	AJ	Cu									Al	Cu
4		4.91		5.53	0.098	0.23	28	23	23	36	30	30	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	35	30	30	45	38	39	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	46	39	40	60	50	52	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	60	50	51	77	64	66	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.900	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.660	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.800	5.750
70	0.443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150	165	5.320	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.220	10.900
120	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.120	13.800
150	0.206	0.1240	0.247	0.1488	0.074	0.63	210	175	205	270	225	265	11.40	17.300
185	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.10	21.300
240	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.20	27.600
300	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.80	34.500
400	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.40	46.000
500	0.0605	0.0366	0.759	0.0459	0.072	0.70	370	320	425	470	390	520	38.00	57.500
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.90	72.500

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE & HALF CORES, AL/COPPER COND., PVC INSULATED, UN-ARMOURED CABLES

Cable Code: AYY/YY Ref Specification: IS:1554 PART-1

PHYSICAL PARAMETERS

SIZE cross-sectional		m nos of conductor	Nominal Thickness of	Minimum Thickness of	Normal thickness of	Approx. Overal	Approx. Net Wt. of cable (Kg/KM)		
area (Sq MM)	Phase	Neutral	(Insulation) (mm)	inner sheath	outer sheath	Diameter	With Al Conductor	With Cu Conductor	
10.00	Al	Cu	Phase / Neutral	(mm)	(mm)	(mm)	AYY	YY	
3x25+16	6/6	6/6	1.20/1.00	0.30	2.00	24	700	1264	
3x35+16	6/6	6/6	1.20/1.00	0.30	2.00	26	850	1600	
3x50+25	6/6	6/6	1.40/1.20	0.30	2.00	29	1050	2100	
3x70+35	12/6	12/6	1.40/1.20	0.40	2.20	32	1400	2900	
3x95+50	15/6	15/6	1.60/1.40	0.40	2.20	36	1800	3900	
3x120+70	15/12	18/12	1.60/1.40	0.50	2.40	40	2200	4850	
3x150+70	15/12	18/12	1.80/1.40	0.50	2.40	44	2600	5800	
3x185+95	30/15	30/15	2.00/1.60	0.50	2.60	48	3200	7200	
3x240+120	30/15	34/18	2.20/1.60	0.60	3.00	54	4100	9300	
3x300+150	30/15	34/18	2.40/1.80	0.60	3.20	62	5000	11500	
3x400+185	53/30	53/30	2.60/2.00	0.70	3.40	68	6300	15000	
3x500+240	53/30	53/34	3.00/2.20	0.70	3.80	77	8000	18500	
3x630+300	53/30	53/34	3.40/2.40	0.70	4.00	87	10000	23500	

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond:-6 & 10 sqmm - Solid circular, 16 sq. mm & above: Standed compacted shaped —Copper. Cond:-4 & 8 so. mm-solid / stranded non compacted circular. 10 sqmm Stranded compacted circular.

-Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sqmm Stranded compacted circular, 16 sqmm & above : Stranded compacted shaped

INSULATION: PVC Type A of IS:5831/OPTION: HR PVC (Type-C of IS-5831), (Red, Yellow & Blue, Black)

OUTER SHEATH: PVC type st-1 of IS:5831 '---OPTIONS: PVC TYPE ST-2 OF IS:5831/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

- ~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...
- ~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICA	L PAF	AMET	ERS											
SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circ	uit Current
Cross-sectional	Resist	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	Sec. duration
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu									Al	Cu
3x25+16	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.90	2.88
3x25+16	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.66	4.03
3x50+25	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.80	5.75
3x70+35	0.443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150	165	5.32	8.05
3x95+50	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.22	10.90
3x120+70	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.12	13.80
3x150+70	0.206	0.1240	0247	0.1488	0.074	0.63	210	175	205	270	225	265	11.40	17.30
3x185+95	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.10	21.30
3x240+120	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.20	27.60
3x300+185	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.80	34.50
3x400+240	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.40	46.00
3x500+240	0.0605	0.0366	0.0759	0.0459	0.072	0.70	370	320	425	470	390	520	38.00	57.50
3x630+300	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.90	72.50

TECHNICAL DETAIL FOR DICABS 1.1 KV FOUR CORES, AL/COPPER COND., PVC INSULATED, UN-ARMOURED CABLES

Cable Code: AYY/YY DHYCICAL DADAMETEDS Ref Specification: IS:1554 PART-1

SIZE cross-sectional		nimum Otana dia	Nominal	Minimum	Nominal thickness of	Approx. Overal		Net Wt. (Kg/KM)
		Strand in	Thickness of	Thickness of			With Al Conductor	With Cu Conducto
area		nductor	Insulation)	inner sheath	outer sheath	Diameter		
(Sq MM)	Al	Cu	(mm)	(mm)	(mm)	(mm)	AYY	YY
4		1/7	1.0	0.30	1.80	16	300	400
6	1	1/7	1.0	0.30	1.80	18	390	540
10	1	6	1.0	0.30	1.80	20	540	788
16	6	6	1.0	0.30	2.00	23	560	950
25	6	6	1.2	0.30	2.00	26	750	1370
35	6	6	1.2	0.30	2.00	30	940	1800
50	6	6	1.4	0.40	2.20	34	1250	2500
70	12	12	1.4	0.40	2.20	38	1550	3300
95	15	15	1.6	0.40	2.40	43	2050	4400
120	15	18	1.6	0.50	2.40	46	2400	5380
150	15	18	1.8	0.50	2.60	51	2950	6670
185	30	30	2.0	0.60	2.80	55	3650	8250
240	30	34	2.2	0.60	3.00	60	4600	10550
300	30	34	2.4	0.70	3.40	66	5500	12950
400	53	53	2.6	0.70	3.60	73	6800	16720
500	53	53	3.0	0.70	4.00	82	8600	21000
630	53	53	3.4	0.70	4.00	92	11000	26000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: 6 & 10 sqmm - Solid circular, 16 sq. mm & above : Standed compacted shaped

-Copper Cond : 4 & 6 sq. mm-solid / stranded non compacted circular

lar, 10 sqmm Stranded compacted circular, 16 sqmm & above : Stranded compacted shaped

INSULATION: PVC Type A of IS:5831/OPTION: HR PVC (Type-C of IS-5831), (Red, Yellow & Blue, Black)

OUTER SHEATH : PVC type st-1 of IS:5831 '---OPTIONS : PVC TYPE ST-2 OF IS:5831/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : any other colour as per requirement

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose..

~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICA	L PAR	AMET	ERS											
SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circ	uit Current
Cross-sectional	Resist	ance at	Resis	tance at	of cableat 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1 S	Sec. duration
area (Sq MM)	20°C in	Ohm/km	70°C ir	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.53	0.098	0.23	28	23	23	36	30	30	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	35	30	30	45	38	39	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	46	39	40	60	50	52	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	60	50	51	77	64	66	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.900	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.660	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.800	5.750
70	.0443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150.	165	5.320	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.220	10.900
120	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.120	13.800
150	0.206	0.1240	0.247	0.1488	0.074	0.63	210	175	205	270	225	265	11.400	17.300
185	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.100	21.300
240	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.200	27.600
300	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.800	34.500
400	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.400	46.000
500	0.0605	0.0366	0.0759	0.0459	0.072	0.70	370	320	425	470	390	520	38.000	57.500
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.900	72.500

TECHNICAL DETAIL FOR DICABS 1.1 KV

SINGLE CORE, AL/COPPER COND., PVC INSULATED, AL WIRE/STRIP ARMOURED CABLES

Cable Code: AYFaY/YFaY, AYWaY/YWaY DUNCTON DADAMETERS

Ref Specification: IS:1554 PART-1

SIZE	Minin		Nominal	ADM	OURING WITH	EI AT STDI	D (AvEnV/VE	214	ADMO	URING WITH	POLIND I	IIDEC (AVIA	(aV/Vumu)
Cross-	No.			Nominal	Minimum	Approx.	Approx.		Nominal	Minimum	Approx.		. Net Wt
			Thicknes of										
-sectional	Stran		Insulation)	Thickness	Thickness of	Overall	of cable		Diameter	Thickenss of			(Kg/KM)
area	Cond		(mm)	of armour	outer sheath			With Cu cond.	of wire			With Al cond	
(Sq MM)	Al	Cu		(mm)	(mm)	(mm)	AYFaY	AYFaY	(mm)	(mm)	(mm)	AYWaY	YWaY
4		1/7	1.3	N/A	N/A	N/A	N/A	N/A	1.40	1.24	11	150	180
6	1	1/7	1.3	N/A	N/A	N/A	N/A	N/A	1.40	1.24	12	180	210
10	1	6	1.3	N/A	N/A	N/A	N/A	N/A	1.40	1.24	13	200	260
16	6	6	1.3	N/A	N/A	N/A	N/A	N/A	1.40	1.24	14	250	350
25	6	6	1.5	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	300	450
35	6	6	1.5	N/A	N/A	N/A	N/A	N/A	1.40	1.24	16	350	560
50	6	6	1.7	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	450	750
70	12	12	1.7	N/A	N/A	N/A	N/A	N/A	1.40	1.40	20	550	980
95	15	15	1.9	0.80	1.40	21	650	1230	1.60	1.40	22	700	1300
120	15	18	1.9	0.80	1.40	23	750	1500	1.60	1.40	24	800	1550
150	15	18	2.1	0.80	1.40	24	900	1830	1.60	1.40	26	950	1880
185	30	30	2.3	0.80	1.40	27	1050	2200	1.60	1.40	29	1100	2250
240	30	34	2.5	0.80	1.40	30	1300	2600	1.60	1.56	32	1400	2900
300	30	34	2.7	0.80	1.56	32	1600	3450	1.60	1.56	33	1650	3500
400	53	53	3.0	0.80	1.56	37	1950	4400	2.00	1.56	39	2100	4580
500	53	53	3.4	0.80	1.56	40	2400	5500	2.00	1.72	12	2700	5800
630	53	53	3.9	0.80	1.72	45	3100	7000	2.00	1.88	48	3300	7200
800	53	53	3.9	0.80	1.88	49	3700	8650	2.00	1.88	52	4000	8950
1000	53	53	3.9	0.80	2.04	55	4600	10800	2.50	2.04	59	4900	11000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: -AL. Cond: -6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped ~Copper, Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above : Stranded compacted shaped

ARMOURING : Single layer of Aluminium Round wires / Flat Strips

INNERSHEATH: PVC as per IS: 1554PT-1 INSULATION: PVC Type A of IS:5831/OPTION: -HR PVC (Type-C of IS-5831), Colour : Black OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK, OPTIONS : any other colour as per requirement.

- Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose... - Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circ	uit Current
Cross-sectional	Resist	ance at	Resis	tance at	of cable	of cable	With A	Juminiur	n cond.	With	Copper	cond.	Rating for 1	Sec. duration
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	at 50HZ	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	in ohms/km	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Al	Cu
4	7.41	4.61	8.89	5.53	0.157	0.48	31	30	27	39	38	35	0.304	0.460
6	4.61	3.08	5.53	3.70	0.148	0.56	39	37	35	49	48	44	0.456	0.690
10	3.08	1.83	3.70	2.20	0.138	0.67	51	51	47	65	64	60	0.760	1.550
16	1.91	1.15	2.29	1.38	0.128	0.81	66	65	64	85	83	82	1.220	1.840
25	1.20	0.727	1.44	0.87	0.120	0.87	86	84	84	110	110	110	1.900	2.880
35	0.868	0.524	1.04	0.63	0.114	1.00	100	100	105	130	125	130	2.660	4.030
50	0.641	0.387	0.769	0.464	0.110	1.03	120	115	130	155	150	165	3.800	5.750
70	0.443	0.268	0.532	0.322	0.103	1.21	140	135	155	190	175	205	5.320	8.050
95	0.320	0.193	0.384	0.232	0.101	1.27	175	155	190	220	200	245	7.220	10.90
120	0.253	0.153	0.304	0.184	0.096	1.42	195	170	220	250	220	280	9.120	13.80
150	0.206	0.1240	0.247	0.1488	0.094	1.42	220	190	250	280	245	320	11.400	17.30
185	0.164	0.0991	0.197	0.1189	0.092	1.44	240	210	290	305	260	370	14.100	21.30
240	0.125	0.0754	0.151	0.0912	0.090	1.53	270	225	335	345	285	425	18.200	27.60
300	0.100	0.0601	0.122	0.0733	0.088	1.56	295	245	380	375	310	475	22.800	34.50
400	0.0778	0.0470	0.0961	0.0580	0.088	1.59	325	275	435	400	335	550	30.400	46.00
500	0.0605	0.0366	0.076	0.0459	0.087	1.67	345	295	480	425	355	590	38.000	57.50
630	0.0469	0.0283	0.0610	0.0368	0.086	1.67	390	320	550	470	375	660	47.880	72.50
800	0.0367	0.0221	0.0503	0.0303	0.083	1.75	450	380	610	530	423	725	60.800	92.00
1000	0.0291	0.0176	0.0422	0.0255	0.082	1.94	500	414	680	590	471	870	76,000	115.00

TABLE . 7

TECHNICAL DETAIL FOR DICABS 1.1 KV

TWO CORES, AL/COPPER COND., PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES
Cable Code: AYFY / YFY, AYWY / YWY
Ref Specification: IS:1554 PART-1

PHYSICAL PARAMETERS

	OAL I	Air	AINIT LEL											
SIZE	Minir	num	Nominal	Minimum	ARMO	OURING WITH F	LAT STRIP	(AYFY / YFY)	ARM	OURING WITH	ROUND	WIRES (AYV	VY/YWY)
Cross-	No	of	Thickness	Thickness	Nominal	Minimum	Approx.	Approx	. Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional	Stan	ds in	of	of	Thickness	Thickness of	Overall	of cable	(Kg/KM)	Diameter	Thickness of	Overall	of cable	
area	Cond	uctor	Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al cond	With Cu cond	of armour	outer sheath	Diameter	With Al cond	With Cu con
(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	(mm)	AYFY	YFY	(mm)	(mm)	(mm)	AYWY	YWY
4		1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	600	650
6	1	1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	660	730
10	1	6	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	20	750	870
16	6	6	1.0	0.30	0.80	1.40	18	580	780	1.60	1.40	20	750	950
25	6	6	1.2	0.30	0.80	1.40	20	700	1000	1.60	1.40	22	900	1200
35	6	6	1.2	0.30	0.80	1.40	22	800	1230	1.60	1.40	23	1030	1450
50	6	6	1.4	0.30	0.80	1.40	25	1000	1620	1.60	1.56	26	1300	1900
70	12	12	1.4	0.30	0.80	1.56	27	1200	2050	1.60	1.56	29	1500	2350
95	15	15	1.6	0.40	0.80	1.56	30	1550	2720	2.00	1.56	33	2050	3200
120	15	18	1.6	0.40	0.80	1.56	32	1800	3290	2.00	1.72	35	2400	3900
150	15	18	1.8	0.40	0.80	1.72	35	2100	3970	2.00	1.72	37	2760	4600
185	30	30	2.0	0.50	0.80	1.88	38	2500	4800	2.00	1.88	41	3200	5500
240	30	34	2.2	0.50	0.80	2.04	43	3100	6080	2.50	2.04	47	4200	7200
300	30	34	2.4	0.60	0.80	2.20	48	3700	7400	2.50	2.20	50	5000	8700
400	53	53	2.6	0.70	0.80	2.36	53	4500	9450	3.15	2.52	58	6600	11500
500	53	53	3.0	0.70	0.80	2.68	56	5600	1180	3.15	2.84	64	8000	14000
630	53	53	3.4	0.70	0.80	2.84	66	6900	14700	4.00	3.00	72	11000	18800

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: -AL. Cond :- 6 & 10 SQMM-Solid circular, 16 sq. mm & above : Standed compacted shaped
-Copper Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above :
Stranded compacted shaped

ARMOURING : Single layer of Galvanized steel
Round wres Plat Strips

NERSHEATH:
NPERSHEATH:
PVC as per IS : 1554PT-1

INSULATION: PVC Type A of IS:5831/OPTION: -HR PVC (Type-C of IS:5831), Colour: Red & Black _OUTER SHEATH: PVC TYPE ST-1 OF IS: 5831 - PVE TYPE ST-2 OF IS: 5831/FR TYPE/FRIS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

— Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

— Please ref page no 45 for pormal delivery lengths & packing details.

ELECTRICAL PARAMETERS

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circ	uit Current
Cross-sectional	Resista	ance at	Resis	tance at	of cable	of cable	With A	Juminiur	n cond.	With 6	Copper	cond.	Rating for 1	Sec. duration
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	at 50HZ	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	in ohms/km								Al	Cu
4		4.61		5.53	0.098	0.23	32	27	27	41	35	35	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	40	34	35	50	44	45	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	55	45	47	70	58	60	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	70	58	59	90	75	78	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	90	76	78	115	97	105	1.90	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	110	92	99	140	120	125	2.66	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	135	115	125	165	145	155	3.80	5.750
70	0.443	0.268	0.532	0.322	0.076	0.56	160	140	150	205	180	195	5.32	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	190	170	185	240	215	230	7.22	10.90
120	0.253	0.153	0.304	0.184	0.075	0.63	210	190	210	275	235	265	9.12	13.80
150	0.206	0.1240	0.247	0.1488	0.074	0.63	240	210	240	310	270	305	11.40	17.30
185	0.164	0.0991	0.197	0.1189	0.074	0.64	275	240	275	350	300	350	14.10	21.30
240	0.125	0.0754	0.151	0.0912	0.073	0.67	320	275	325	405	345	410	18.20	27.60
300	0.100	0.0601	0.122	0.0733	0.073	0.68	355	305	365	450	385	465	22.80	34.50
400	0.0778	0.0470	0.0961	0.0580	0.072	0.70	385	345	420	490	485	530	30.40	46.00
500	0.0605	0.0366	0.0759	0.0459	0.072	0.70	425	380	475	540	460	605	38.00	57.50
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	465	415	540	640	550	785	47.90	72.50

TECHNICAL DETAIL FOR DICABS 1.1 KV

THREE CORES, AL/COPPER COND., PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES Cable Code: AYFY / YFY, AYWY / YWY Ref Specification: IS:1554 PART-1

DUVELCAL DADAMETERS

			AIVIETER	_										
SIZE	Mini		Nominal	Minimum		DURING WITH F					OURING WITH			
Cross-	No	of	Thickness	Thickness	Nominal	Minimum	Approx.		. Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional	Stan	ds in	of	of	Thickness	Thickness of	Overall		(Kg/KM)	Diameter	Thickness of		of cable	
area	Conc	luctor	Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al cond	With Cu cond	of wire	outer sheath	Diameter	With Al cond	With Cu con
(sqmm)	Al	Cu	(mm)	(mm)	strip (mm)	(mm)	(mm)	AYFY	YFY	(mm)	(mm)	(mm)	AYWY	YWY
4		1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	600	650
6	1	1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	700	810
10	1	6	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	21	900	1100
16	6	6	1.0	0.30	0.80	1.40	20	700	1000	1.60	1.40	21	950	1250
25	6	6	1.2	0.30	0.80	1.40	23	900	1350	1.60	1.40	23	1100	1550
35	6	6	1.2	0.30	0.80	1.40	24	1000	1650	1.60	1.40	26	1300	1950
50	6	6	1.4	0.30	0.80	1.56	27	1300	2230	1.60	1.56	29	1600	2530
70	12	12	1.4	0.40	0.80	1.56	31	1600	2900	1.60	1.56	33	2150	3450
95	15	15	1.6	0.40	0.80	1.56	35	2000	3750	2.00	1.72	37	2650	4400
120	15	18	1.6	0.40	0.80	1.72	37	2400	4630	2.00	1.72	39	3000	5200
150	15	18	1.8	0.50	0.80	1.88	41	2800	5600	2.00	1.88	43	3550	6300
185	30	30	2.0	0.50	0.80	1.88	46	3400	6840	2.00	2.04	49	4600	8000
240	30	34	2.2	0.60	0.80	2.20	51	4200	8650	2.50	2.20	54	5600	10000
300	30	34	2.4	0.60	0.80	2.36	56	5050	10630	2.50	2.36	59	6600	12000
400	53	53	2.6	0.70	0.80	2.52	63	6300	13740	3.15	2.68	68	8700	16000
500	53	53	3.0	0.70	0.80	2.84	70	7800	17100	3.15	3.00	75	11000	20000
630	53	53	3.4	0.70	0.80	3.00	78	9700	21418	4.00	3.00	84	14000	25500

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL., Cond:-6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped ~Copper, Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above : Stranded compacted shaped

ARMOURING: Single layer of Galvanized steel Round wires / Flat Strips INNERSHEATH: PVC as per IS: 1554PT-1

INSULATION: PVC Type A of IS:5831/OPTION: -HR PVC (Type-C of IS-5831), Red, Yellow & Blue OUTER SHEATH : PVC TYPE ST-1 OF IS : 5831 '--- OPTIONS : PVC TYPE ST-2 OF IS: 5831/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK, OPTIONS : any other colour as per requirement. Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRIC	AL PA	RAME	TERS											
SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance				t Rating in .	Amps		Short Circ	
Cross-sectional	Resist	ance at		tance at	of cable	of cable	With A	Juminiur	n cond.		Copper	cond.	Rating for 1	
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	at 50HZ	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	in ohms/km								Al	Cu
4		4.61		5.53	0.098	0.23	28	23	23	36	30	30	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	35	30	30	45	38	39	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	46	39	40	60	50	52	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	60	50	51	77	64	66	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.900	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.660	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.800	5.750
70	0.443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150	165	5.320	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.220	10.900
120	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.120	13.800
150	0.206	0.1240	0.247	0.1488	0.074	0.63	210	175	205	270	225	265	11.400	17.300
185	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.100	21.300
240	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.200	27.600
300	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.800	34.500
400	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.400	46.000
500	0.0605	0.0366	0.0759	0.0459	0.072	0.70	370	320	425	470	390	520	38.000	57.500
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.900	72.500

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE AND HALF CORES, AL/COPPER COND., PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES

Cable Code 3.5 Core - AYFY / YFY, AYWY / YWY

Ref Specification: IS:1554 PART-1

PHYSICAL	PARAMETERS

SIZE	Minis	mum	Nominal	Minimum	ARMO	URING WITH	FLAT STF	IIP (AYFY /	YFY)	ARM	OURING WITH	ROUND	WIRES (AYV	NY/YWY)
Cross-	No	of	Thickness of	Thickness	Nominal	Minimum	Approx.	Approx	x. Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional	Stan	ds in	Insulation)	of	Thickness	Thickness of	Overall	of cable	e (Kg/KM)	Diameter	Thickness of	Overall	of cable (Kg/KM)
area	Cond	luctor	(mm)	inner Sh.	strip	outer sheath	Diameter	With Al cond	With Cu cond	of wire	outer sheath	Diameter	With Al cond	With Cu cor
(sqmm)	Phase/	Netural	Phase/Neutral	(mm)	(mm)	(mm)	(mm)	AYFY	YFY	(mm)	(mm)	(mm)	AYWY	YWY
3x25+16	6/6	6/6	1.20/1.00	0.30	0.80	1.40	24	1000	1550	1.60	1.40	26	1300	1850
3x35+16	6/6	6/6	1.20/1.00	0.30	0.80	1.40	26	1200	1950	1.60	1.40	28	1450	2150
3x50+25	6/6	6/6	1.40/1.20	0.30	0.80	1.56	30	1500	2600	1.60	1.56	31	1800	2800
3x70+35	12/6	12/6	1.40/1.20	0.40	0.80	1.56	34	1800	3300	2.00	1.56	36	2400	3800
3x95+50	15/6	15/6	1.60/1.40	0.40	0.80	1.56	37	2300	4350	2.00	1.72	39	3000	5000
3x120+70	15/12	18/12	1.60/1.40	0.50	0.80	1.72	41	2800	5450	2.00	1.88	43	3500	6100
3x150+70	15/12	18/12	1.80/1.40	0.50	0.80	1.88	45	3200	6400	2.00	1.88	47	4000	7200
3x185+95	30/15	30/15	2.00/1.60	0.50	0.80	2.04	49	3900	7900	2.50	2.04	53	5200	9200
3x240+120	30/15	34/18	2.20/1.60	0.60	0.80	2.20	55	4800	10000	2.50	2.30	58	6400	11500
3x300+150	30/15	34/18	2.40/1.80	0.60	0.80	2.36	61	5800	12300	3.15	2.52	65	8200	14500
3x400+185	53/30	53/30	2.60/2.00	0.70	0.80	2.68	69	7300	15800	3.15	2.63	75	9900	18400
3x500+240	53/30	53/34	3.00/2.20	0.70	0.80	2.84	77	9000	19500	4.00	3.00	84	13500	24000
3x630+300	53/30	53/34	3.40/2.40	0.70	0.80	3.00	87	11500	25000	4.00	3.00	92	16000	28500

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: --AL. Cond :- 6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped ~Copper. Cond :- 4 & 6 sg. mm-solid / stranded non compacted circular, 10 sg. mm Stranded compacted circular, 16sgmm & above : Stranded compacted shaped

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

ELECTRICAL DADAMETERS

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		No	mal* Cu	rrent Ratin	g in Am	os	Short Circ	uit Current
Cross-sectional	Resist	ance at	Resis	tance at	of cable	of cable	With Al	uminium	cond.	With 0	Copper	cond.	Rating for 1	Sec. duration
area (Sq MM)	20°C in	Ohm/km	70°C in	Ohm/km	at 50HZ	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	AJ	Cu	Al	Cu	in ohms/km								Al	Cu
3x25+16	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.90	2.88
3x35+16	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.66	4.03
3x50+25	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.80	5.75
3x70+35	0.443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150	165	5.32	8.05
3x95+50	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.22	10.90
3x120+70	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.12	13.80
3x150+70	0.206	0.1240	0.247	0.1488	0.074	0.63	210	175	205	270	225	265	11.40	17.30
3x185+95	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.10	21.30
3x240+120	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.20	27.60
3x300+150	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.80	34.50
3x400+185	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.40	46.00
3x500+240	0.0605	0.0366	0.0759	0.0459	0.072	0.70	370	320	425	470	390	520	38.00	57.50
3x630+300	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.90	72.50

[~] Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose..

[~] Please ref page no 43 for normal delivery lengths & packing details.

TECHNICAL DETAIL FOR DICABS 1.1 KV FOUR CORES, AL/COPPER COND., PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES

Cable Code - AYFY / YFY AYWY / YWY PHYSICAL PARAMETERS

Ref Specification: IS:1554 PT-1

4850 8575

THIOTOALTANAMETERO															
	SIZE	Minimum		Nominal	Minimum		OURING WITH I	ARMOURING WITH ROUND WIRES (AYWY/YWY)							
	Cross- No of		Thickness	Thickness	Nominal	Minimum	Approx.	Approx. Net Wt		Nominal	Minimum	Approx.	Approx. Net Wt		
	-sectional	ctional Strands in		of	of	Thickness	Thickness of	Overall	of cable (Kg/KM)		Diameter	Thickness of	Overall	of cable (Kg/KM)	
	area	Conc	luctor	Insulation)		of armour	outer sheath	Diameter	With Al Cond	With Cu Cond	of armour	outer sheath	Diameter	With Al Cond	With Cu Cond
	(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	(mm)	AYFY	YFY	(mm)	(mm)	(mm)	AYWY	YWY
	4		1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	650	800
	6	1	1/7	1.0	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	21	880	1030
	10	1	6	1.0	0.30	0.8	0.40	21	750	998	1.60	1.40	22	900	1150
	16	6	6	1.0	0.30	0.8	1.40	22	860	1260	1.60	1.40	23	1120	1520
	25	6	6	1.2	0.30	0.8	1.40	25	1100	1720	1.60	1.40	27	1400	2020
	35	6	6	1.2	0.30	0.8	1.40	28	1300	2170	1.60	1.56	30	1600	2470
	50	6	6	1.4	0.40	0.8	1.56	32	1600	2850	2.00	1.56	34	2200	3445
	70	12	12	1.4	0.40	0.8	1.56	35	2000	3740	2.00	1.56	37	2650	4390
	95	15	15	1.6	0.40	0.8	1.72	40	2600	5000	2.00	1.72	42	3300	5660

48 3600 7325

52 4300 8890

67 6600

74 8200

90 13000 28625 4.00 3.00 96 18000 33630

53 53 CROSS-SECTIONAL VIEW

34 2.2 0.60 0.8

53 3.0

53

120 15 18 1.6 0.50 0.8

150 15 18 1.8 0.50 0.8

185 30 30

240

300 30 34 2.4 0.70 0.8

400 53 53 2.6 0.70 0.8

500

630

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond:- 6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped ~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16 sqmm & above : Stranded compacted shaped

ARMOURING: Single layer of Galvanized steel Round wires / Flat Strips INNERSHEATH : PVC as per IS: 1554PT-1

0.8

1.88 43 3050 6030 2.00 1.88 47 3850 6830

1.88

2.04

2.36 59 5400

2.52

2.84

3.00 80 10500 22900 4.00 3.00 86 15000 27400

3.00

INSULATION: PVC Type A of IS:5831/OPTION: -HR PVC (Type-C of IS-5831). Red, Yellow & Blue, Black OUTER SHEATH : PVC TYPE ST-1 OF IS :

2.04

2.20 56 5800 10390

11355 2.50 2.36 62 7000 12960

14050 3.15 2.68 70 9200 16650

18128 3.15 2.84 76 11000 20930

5831 '--- OPTIONS : PVC TYPE ST-2 OF IS: 5831/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requir

0.60 0.8

0.70 0.8

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose.

~ Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	Max. Cond. D.C.		Cond. A.C.	App. Reactance	App. Capecitance		Nor	Short Circuit Current					
cross-sectional	Resistance at 20°C in Ohm/km		Resistance at 70°C in Ohm/km		of cable at 50HZ in ohms/km	of cable in micro F/KM	With Aluminium cond.			With Copper cond.			Rating for 1Sec.duration	
area (Sq MM)							Ground	Duct	Air	Ground	Duct	Air	in K. Amps	
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.53	0.098	0.23	28	23	23	36	30	30	0.304	0.460
6	4.61	3.08	5.53	3.70	0.096	0.28	35	30	30	45	38	39	0.456	0.690
10	3.08	1.83	3.70	2.20	0.091	0.34	46	39	40	60	50	52	0.760	1.150
16	1.91	1.15	2.29	1.38	0.085	0.40	60	50	51	77	64	66	1.220	1.840
25	1.20	0.727	1.44	0.87	0.083	0.42	76	63	70	99	81	90	1.900	2.880
35	0.868	0.524	1.04	0.63	0.082	0.48	92	77	86	120	99	110	2.660	4.030
50	0.641	0.387	0.769	0.464	0.082	0.49	110	95	105	145	125	135	3.800	5.750
70	0.443	0.268	0.532	0.322	0.076	0.56	135	115	130	175	150	165	5.320	8.050
95	0.320	0.193	0.384	0.232	0.076	0.58	165	140	155	210	175	200	7.220	10.900
120	0.253	0.153	0.304	0.184	0.075	0.63	185	155	180	240	195	230	9.120	13.800
150	0.206	0.1240	0.247	0.1488	0.074	0.63	210	175	205	270	225	265	11.40	17.300
185	0.164	0.0991	0.197	0.1189	0.074	0.64	235	200	240	300	255	305	14.10	21.300
240	0.125	0.0754	0.151	0.0912	0.073	0.67	275	235	280	345	295	355	18.20	27.600
300	0.100	0.0601	0.122	0.0733	0.073	0.68	305	260	315	385	335	400	22.80	34.500
400	0.0778	0.0470	0.0961	0.0580	0.072	0.70	335	290	375	425	360	435	30.40	46.000
500	0.0605	0.0366	0.0759	0.0459	0.072	0.70	370	320	425	470	390	520	38.00	57.500
630	0.0469	0.0283	0.0610	0.0368	0.072	0.70	405	350	480	555	470	675	47.90	72.500

TECHNICAL DETAIL FOR DICABS 1.1 KV 1.5 SQ MM COPPER COND., PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CONTROL CABLES

Cable Code - YY/YFY/YWY

Ref Specification: IS:1554 PART-1

PHIS	ICAL	PARAN	/IEIEF	15														
No	Minimum		3	UNARMO	URED (Y	Y)	- 1	RMOURE	WITH FL	AT STRIPS (YFY)		ARM	OURED W	TH ROU	ND WIRE	S (YWY)	
of		Nom thick.		prox.	Approx	Net Wt.	Nominal	Minimum		prox.	Approx	. Net Wt	Nominal	Minimum	App		Approx	
Cores	of inner	of outer		rerall	of cable	(Kg/KM)	Thickness			rerall	of cable	(Kg/KM)	Dia of	Thickness				(Kg/KM)
	Sheath	Sheath		ter (mm)			of Armour			ter (mm)			Armour	of outr sh.	Diamet		with	with
	(mm)	mm					strip (mm)			Std. Cond.		Std. Cond.	wire (mm)		Solid cond			Std. Cond.
2	0.30	1.8	12	12	180	180	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	13	14	400	420
3	0.30	1.8	12.5	13	200	210	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	14	14	450	450
4	0.30	1.8	13	14	230	250	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	15	500	500
5	0.30	1.8	14	14	250	250	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	16	16	520	550
6	0.30	1.8	15	15	290	300	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	17	17	580	600
7	0.30	1.8	15	15	310	320	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	17	17	650	680
10	0.30	1.8	18	19	420	450	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.40	20	21	800	840
12	0.30	1.8	19	20	470	500	0.80	1.24	19	20	700	745	1.60	1.40	21	22	940	970
14	0.30	1.8	20	20	530	550	0.80	1.40	20	21	800	820	1.60	1.40	22	23	1000	1050
16	0.30	1.8	21	21	600	600	0.80	1.40	21	22	850	900	1.60	1.40	23	24	1100	1100
19	0.30	2.0	22	23	700	720	0.80	1.40	22	23	950	1000	1.60	1.40	24	25	1200	1250
24	0.30	2.0	25	26	850	900	0.80	1.40	25	27	1150	1200	1.60	1.40	27	28	1450	1500
27	0.30	2.0	26	27	920	995	0.80	1.40	26	27	1250	1300	1.60	1.40	28	29	1500	1550
30	0.30	2.0	27	28	1000	1050	0.80	1.40	27	28	1330	1400	1.60	1.40	29	30	1650	1700
37	0.30	2.0	28	29	1200	1240	0.80	1.40	29	30	1530	1600	1.60	1.40	30	32	1850	1950
40	0.30	2.0	29	30	1270	1300	0.80	1.40	30	31	1650	1750	1.60	1.56	32	35	2000	2100
44	0.30	2.0	31	33	1400	1450	0.80	1.56	32	34	1850	1950	1.60	1.56	34	36	2200	2300
52	0.40	2.0	33	35	1650	1700	0.80	1.56	34	35	2050	2150	2.00	1.56	36	38	2700	2800
61	0.40	2.2	35	37	1850	1950	0.80	1.56	35	37	2300	2450	2.00	1.56	38	40	3000	3100

CROSS-SECTIONAL VIEW

INSULATION MATERIAL: PVC Type A of IS: 5831/OPTION: HR PVC (Type-C of IS-5831) Nominal insulation thickness - 0.80 mm Coresidentification: Up to 5 Cores by colour coding & more than 5 cores 5 cores: By colour coding / Nos. printing on cores as per IS: 1554pt-1

ARMOURING : Single layer of Galvanized steel Round wires / Flat Strips as applicable

INNER SHEATH : Extruded PVC as per IS : 1554PT-1

CONDUCTOR :MATERIAL:
-Annealed bare copper / option-Tinned
Construction : SOLID / STRANDED

OUTER SHEATH: PVC TYPE ST-1 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2 OF IS: 5831 / FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK, OPTIONS :

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose... ~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICAL PARAMETERS

No	Max. Cond. D.C.	App. C	ond. A.C.	Reactance	Appro		Norma	I* Currer	t Rating in	Amps		Short Circ	cuit Current
of	Resistance at		tance at	of cable	Capecitance	With ge	neral in	sulation	With H	R. insu	lation	Rating for 1	Sec. duration
Cores	20°C in Ohm/km		hm/km	at 50HZ	of cable	Ground	Duct	Air	Ground	Duct	Air	With Gen. Purpose	With Heat Resis.
		at 70°C	at 85°C	in ohms/km	in micro F/KM							Insulation	Insulation
2	12.10	14.52	15.2	0.112	0.20	23	20	20	26	24	24	0.173	0.156
3	12.10	14.52	15.2	0.112	0.20	21	17	17	24	21	21	0.173	0.156
4	12.10	14.52	15.2	0.112	0.20	21	17	17	24	21	21	0.173	0.156
5	12.10	14.52	15.2	0.112	0.20	21	17	17	24	21	21	0.173	0.156
6	12.10	14.52	15.2	0.112	0.20	15	13	13	17	16	16	0.173	0.156
7	12.10	14.52	15.2	0.112	0.20	14	13	13	16	15	15	0.173	0.156
10	12.10	14.52	15.2	0.112	0.20	13	11	11	15	13	13	0.173	0.156
12	12.10	14.52	15.2	0.112	0.20	12	10	10	14	12	12	0.173	0.156
14	12.10	14.52	15.2	0.112	0.20	11	10	10	13	12	12	0.173	0.156
16	12.10	14.52	15.2	0.112	0.20	11	9	9	13	11	11	0.173	0.156
19	12.10	14.52	15.2	0.112	0.20	10	9	9	11	11	11	0.173	0.156
24	12.10	14.52	15.2	0.112	0.20	9	8	8	10	10	10	0.173	0.156
27	12.10	14.52	15.2	0.112	0.20	9	8	8	10	10	10	0.173	0.156
30	12.10	14.52	15.2	0.112	0.20	9	7	7	10	8	8	0.173	0.156
37	12.10	14.52	15.2	0.112	0.20	8	7	7	9	8	8	0.173	0.156
40	12.10	14.52	15.2	0.112	0.20	8	7	7	9	8	8	0.173	0.156
44	12.10	14.52	15.2	0.112	0.20	7	7	7	8	7	7	0.173	0.156
52	12.10	14.52	15.2	0.112	0.20	6	6	6	7	7	7	0.173	0.156
61	12.10	14.52	15.2	0.112	0.20	6	6	6	7	7	7	0.173	0.156

TABLE . 12

TECHNICAL DETAIL FOR DICABS 1.1 KV 2.5 SQ MM COPPER COND.. PVC INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CONTROL CABLES

Cable Code - YY/YFY/YWY

Ref Specification: IS:1554 PART-1

PHYS	ICAL	PARAM	METER	RS														
No	Minimum			UNARM	OURED (YY)	ARMOU	RED WITH	FLAT ST	RIPS (YFY)		(ARI	MOURED	WITH ROU	IND WIF	RES (YW	W)	
of	Thick.	Nom thick.		prox.	Approx.		Nominal	Minimum		prox.		. Net Wt	Armour	Minimum	Ap	prox.	Approx	
Cores	of inner	of outer		erall	of cable i	(Kg/KM)	Thickness	Thickness	0	verall		able	Wire	Thickness of	0	erall	of cable	(Kg/KM)
	Sheath	Sheath		ter (mm)	Armour			of outr. sth		ter (mm)		/KM)	Dia.	outer sheath	Diame	ter (mm)	Diamete	
	(mm)	mm	Solid Cond	Std. Cond.	Solid Cond	Std. Cond.	Strip (mm)	(mm)	Solid Cond	Std. Cond.	Solid Cond	Std. Cond.	Wire (mm)	(mm)	Solid Cond	Std. Cond.	Solid Cond	Std. Con
2	0.30	1.8	13	13	220	240	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	14	15	480	500
3	0.30	1.8	14	14	260	270	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	16	530	550
4	0.30	1.8	15	15	310	320	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	16	17	600	620
5	0.30	1.8	16	16	340	350	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	17	18	640	680
6	0.30	1.8	17	17	390	420	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	20	730	750
7	0.30	1.8	17	17	424	440	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	20	760	790
10	0.30	1.8	20	21	570	600	0.80	1.40	21	22	850	900	1.60	1.40	23	24	1100	1150
12	0.30	2.0	21	22	670	700	0.80	1.40	22	23	950	1000	1.60	1.40	24	25	1180	1250
14	0.30	2.0	22	24	750	800	0.80	1.40	23	24	1050	1035	1.60	1.40	25	26	1300	1350
16	0.30	2.0	24	25	840	900	0.80	1.40	24	25	1120	1150	1.60	1.40	26	27	1400	1450
19	0.30	2.0	25	26	950	1000	0.80	1.40	25	26	1250	1330	1.60	1.40	27	28	1550	1620
24	0.30	2.0	28	30	1200	1260	0.80	1.40	29	30	1550	1630	1.60	1.56	31	32	1900	2000
27	0.30	2.0	29	31	1300	1350	0.80	1.40	30	31	1650	1750	1.60	1.56	32	33	2050	2100
30	0.30	2.0	30	32	1400	1500	0.80	1.56	31	32	1800	1920	1.60	1.56	33	34	2200	2250
37	0.40	2.2	33	34	1700	1800	0.80	1.56	34	35	2100	2225	2.00	1.56	36	37	2800	2900
40	0.40	2.2	34	36	1850	1900	0.80	1.56	35	36	2300	2400	2.00	1.56	37	39	2950	3100
44	0.40	2.2	36	38	2000	2100	0.80	1.56	37	37	2500	2600	2.00	1.56	40	41	3200	3350
52	0.40	2.2	38	40	2350	2450	0.80	1.56	39	41	2850	2950	2.00	1.72	42	43	3600	3700
61	0.40	2.2	40	43	2700	2800	0.80	1.56	41	43	3250	3350	2.00	1.72	44	46	4000	4200

CROSS-SECTIONAL VIEW

CONDUCTOR :MATERIAL: Annealed bare copper option-Tinned Construction : SOLID / STRANDED

INSULATION MATERIAL : PVC Type A of IS : 5831/OPTION: HR PVC (Type-C of IS-5831) Nominal insulation

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

thickness -0.90 mm Coresidentification : Up to 5 Cores by colour coding & more than 5 cores 5 cores By colour coding / Nos. Printing on cores as per IS: 1554pt-1 COLOUR OF OUTER SHEATH : BLACK. OPTIONS : any other colour as per requirement

INNER SHEATH : Extruded PVC as per IS : 1554PT-1 ARMOURING: Single layer of Galvanized steel Round

wires / Flat Strips as applicable OUTER SHEATH: PVC TYPE ST-1 OF IS:5831'---OPTIONS: PVC TYPE ST-2 OF IS:5831 / FR TYPE/FRLS TYPE

- Please ref page no 43 for normal delivery lengths & packing details. ELECTRICAL DARAMETERS

No	Max. Cond. D.C.	App. C	ond. A.C.	Reactance	Appro		Norma	I* Currer	nt Rating in	Amps		Short Circ	uit Current
of	Resistance at		tance at	of cable	Capecitance			sulation	With H.	R. insul	ation	Rating for 1	Sec. duration
Cores	20°C in Ohm/km	in Ol at 70°C	hm/km at 85°C	at 50HZ in ohms/km	of cable in microF/KM	Ground	Duct	Air	Ground	Duct	Air	General Insulation	Heat Insulation
2	7.41	8.89	9.34	0.107	0.22	32	27	27	38	32	32	0.288	0.260
3	7.41	8.89	9.34	0.107	0.22	27	24	24	30	28	28	0.288	0.260
4	7.41	8.89	9.34	0.107	0.22	27	24	24	30	28	28	0.288	0.260
5	7.41	8.89	9.34	0.107	0.22	27	24	24	30	28	28	0.288	0.260
6	7.41	8.89	9.34	0.107	0.22	21	18	18	24	21	21	0.288	0.260
7	7.41	8.89	9.34	0.107	0.22	20	17	17	22	20	20	0.288	0.260
10	7.41	8.89	9.34	0.107	0.22	18	15	15	20	16	16	0.288	0.260
12	7.41	8.89	9.34	0.107	0.22	17	14	14	19	16	16	0.288	0.260
14	7.41	8.89	9.34	0.107	0.22	16	13	13	18	15	15	0.288	0.260
16	7.41	8.89	9.34	0.107	0.22	15	13	13	17	15	15	0.288	0.260
19	7.41	8.89	9.34	0.107	0.22	14	12	12	16	14	14	0.288	0.260
24	7.41	8.89	9.34	0.107	0.22	13	11	11	14	13	13	0.288	0.260
27	7.41	8.89	9.34	0.107	0.22	12	10	10	13	12	12	0.288	0.260
30	7.41	8.89	9.34	0.107	0.22	12	10	10	13	12	12	0.288	0.260
37	7.41	8.89	9.34	0.107	0.22	11	9	9	12	10	10	0.288	0.260
40	7.41	8.89	9.34	0.107	0.22	11	9	9	12	10	10	0.288	0.260
44	7.41	8.89	9.34	0.107	0.22	10	9	9	11	10	10	0.288	0.260
52	7.41	8.89	9.34	0.107	0.22	9	8	8	10	10	10	0.288	0.260
61	7.41	8.89	9.34	0.107	0.22	8	8	8	9	9	9	0.288	0.260

TABLE . 13

TECHNICAL DETAIL FOR DICABS 1.1 KV SINGLE CORE. AL/COPPER COND., XLPE INSULATED, UN-ARMOURED CABLES

Cable Code - A2XY/2XY BEF SPEC : IS : 7098PT-1

PHYSICAL PARAMETERS

SIZE	Mir	nimum	Nominal	Nominal	Approx.	Approx. Weight	of cable in kg / km
cross-sectional area (Sq MM)		Strand in ductor	Thickness of Insulation)	Thickness of outer sheath	Overal Diameter	With Al Conductor	With Cooper conducto
	Al	Cu	(mm)	(mm)	(mm)	A2XY	2XY
4		1/7	0.7	1.8	8	70	95
6	1	1/7	0.7	1.8	9	80	120
10	1	6	0.7	1.8	10	100	160
16	6	6	0.7	1.8	11	130	230
25	6	6	0.9	1.8	12	180	335
35	6	6	0.9	1.8	13	230	450
50	6	6	1.0	1.8	15	300	610
70	12	12	1.1	1.8	16	370	800
95	15	15	1.1	1.8	18	460	1050
120	15	18	1.2	1.8	20	550	1300
150	15	18	1.4	2.0	22	620	1550
185	30	30	1.6	2.0	24	820	1950
240	30	34	1.7	2.0	27	1000	2500
300	30	34	1.8	2.0	30	1200	3050
400	53	53	2.0	2.2	33	1550	4000
500	53	53	2.2	2.2	36	1900	5000
630	53	53	2.4	2.2	40	2400	6300
800	53	53	2.6	2.4	47	3000	7950
1000	53	53	2.8	2.6	51	3750	9950

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: 6 & 10 SQMM-Solid circular, 16 sq. mm & above : Standed compacted circular

-Copper Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular Stranded compacted circular

OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE / FRLS TYPE

INSULATION : Crosslinked Polyethylene (XLPE) (Natural colour)

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: any other colour as per requirement.

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose... ~ Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App.	App.		Normal	* Curren	t Rating in	Amps		Short Circu	uit Current
cross-sectional	Resista	ance at	Resist	ance at	Reacetance	Capecitance	With A	luminiun	n cond.	With 0	Copper	cond.	Rating for 1S	
area (Sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	at 50HZ	of cable	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu	in ohms/km	in micro F/KM							Al	Cu
4		4.61		5.90	0.136	0.29				48	47	45	0.376	0.572
6	4.61	3.08	5.90	3.94	0.128	0.34	48	45	45	60	59	57	0.564	0.858
10	3.08	1.83	3.94	2.34	0.118	0.42	62	62	61	80	78	77	0.940	1.430
16	1.91	1.15	2.44	1.47	0.108	0.50	81	80	83	104	102	106	1.504	2.288
25	1.20	0.727	1.54	0.931	0.102	0.52	99	90	115	130	115	145	2.350	3.575
35	0.868	0.524	1.11	0.671	0.097	0.60	117	110	135	155	140	175	3.290	5.005
50	0.641	0.387	0.820	0.495	0.092	0.63	138	125	170	185	165	215	4.700	7.150
70	0.443	0.268	0.567	0.343	0.088	0.68	168	155	210	225	200	270	6.580	10.01
95	0.320	0.193	0.411	0.248	0.085	0.79	204	185	255	265	235	330	8.930	13.59
120	0.253	0.153	0.325	0.197	0.082	0.79	230	210	300	300	265	380	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.082	0.79	265	230	342	335	300	430	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.082	0.79	295	260	385	380	335	495	17.39	26.46
240	0.125	0.0754	0.162	0.0976	0.079	0.84	340	300	450	435	385	590	22.56	34.32
300	0.100	0.0601	0.130	0.0778	0.078	0.86	390	335	519	490	430	670	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.077	0.88	450	380	605	550	480	780	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.076	0.90	500	430	700	610	530	900	47.00	71.50
630	0.0469	0.0283	0.648	0.0391	0.075	0.94	555	485	809	680	590	1020	59.22	90.09
800	0.0367	0.0221	0.530	0.0319	0.075	0.97	625	530	935	740	630	1140	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.068	1.01	690	570	1065	780	660	1250	94.00	143.00

TECHNICAL DETAIL FOR DICABS 1.1 KV TWO CORE, AL/COPPER COND., XLPE INSULATED. UN-ARMOURED CABLES

Cable Code - A2XY/2XY

PHYSICAL PARAMETERS

Ref Specification: IS: 7098PT-1

SIZE Cross- -sectional	Minir No Stran	of	Nominal Thickness of Insulation)	Minimum Thickness of inner sheath	Nominal Thickness of OUTER sheath	Approx. overall Diameter		x, Net Wt e (Kg/KM)
area	Cond		modulion	minor orrodari	OUTETTORICALIT	Diamotor	With Al Cond	With Cu Cond.
(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	A2XY	2XY
4		1/7	0.7	0.30	1.80	13	200	250
6	1	1/7	0.7	0.30	1.80	14	330	400
10	1	6	0.7	0.30	1.80	17	350	470
16	6	6	0.7	0.30	1.80	17	310	500
25	6	6	0.9	0.30	2.00	19	400	700
35	6	6	0.9	0.30	2.00	20	480	900
50	6	6	1.0	0.30	2.00	22	590	1200
70	12	12	1.1	0.30	2.00	25	760	1630
95	15	15	1.1	0.40	2.20	28	1000	2200
120	15	18	1.2	0.40	2.20	31	1200	2700
150	15	18	1.4	0.40	2.20	33	1400	3300
185	30	30	1.6	0.50	2.40	37	1750	4000
240	30	34	1.7	0.50	2.60	41	2000	5000
300	30	34	1.8	0.60	2.80	44	2700	6400
400	53	53	2.0	0.60	3.00	48	3350	8300
500	53	53	2.2	0.70	3.40	54	4200	10400
630	53	53	2.4	0.70	3.60	62	5300	13000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: -6 & 10 SQMM-Solid

circular, 16 sq. mm & above : Standed compacted shaped ~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16 sqmm & above :

Stranded compacted shaped

INNER SHEATH : PVC as per IS : 7098PT-1

INSULATION : Crosslinked Polyethylene (XLPE) (Red & Black colour)

OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE / FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

~ Tabulated approx, net wt. of cables are only guidelines for transportation, loading & unloading purpose... ~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICA	L PAR	AMET	ERS											
SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal*	Current	Rating in .	Amps		Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1 S	Sec. duration
area (Sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
95	0.320	0.193	0.411	0.248	0.084	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	425	17.39	26.46
240	0.125	0.0754	0.162	0.098	0.072	0.31	325	270	102	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.071	0.33	370	305	461	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

DICABS"

Most Modern & Integrated HV & LV Cable Plant in India

DIC_BS

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE CORE. AL/COPPER COND., XLPE INSULATED, UN-ARMOURED CABLES

Cable Code - A2XY/2XY

PHYSICAL PARAMETERS

Ref Specification: IS: 7098PT-1

SIZE Cross- -sectional		m No of ids in	Nominal thickness of	Minimum thickness of	Nominal thick. of outer	Approx. Overall		. Net Wt (Kg/KM)
area (sqmm)	Al	luctor Al	Insulation) (mm)	inner Sh. (mm)	Sheath (mm)	Diameter (mm)	With Al cond A2XY	With Cu Cond 2XY
4		1/7	0.7	0.30	1.80	14	225	300
6	1	1/7	0.7	0.30	1.80	16	330	440
10	1	6	0.7	0.30	1.80	18	400	580
16	6	6	0.7	0.30	1.80	18	400	700
25	6	6	0.9	0.30	2.00	21	530	1000
35	6	6	0.9	0.30	2.00	22	640	1300
50	6	6	1.0	0.30	2.00	25	800	1700
70	12	12	1.1	0.40	2.20	30	1100	2400
95	15	15	1.1	0.40	2.20	32	1350	3100
120	15	18	1.2	0.40	2.20	35	1650	3800
150	15	18	1.4	0.50	2.40	39	2050	4800
185	30	30	1.6	0.50	2.60	43	2500	5950
240	30	34	1.7	0.60	2.80	49	3150	7600
300	30	34	1.8	0.60	3.00	53	3850	9400
400	53	53	2.0	0.70	3.20	59	4850	12000
500	53	53	2.2	0.70	3.60	66	6100	15000
630	53	53	2.4	0.70	3.80	73	7650	19000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: - 6 & 10 SQMM-Solid circular, 16 sq. mm & above : Standed compacted shaped

~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non co ular, 10 sq. mm Stranded compacted circular, 16 sqmm & above : Stranded compacted shaped

INNER SHEATH : PVC as per IS : 7098PT-1 -

INSULATION: Crosslinked Polyethylene (XLPE) (Red, Yellow & Blue colour)

OUTER SHEATH: PVC TYPE ST-2 OF IS 5831 '--- OPTIONS : FR TYPE / FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose.

- Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App.	App. Capecitannoe		Normal	* Current	Rating in	Amps		Short Circu	it Current
Cross-sectional	Resista			tance at	Reactance of	of cable		Juminiur			opper c	ond.	Rating for 1 S	
area (sqmm)	20°C in (Ohm/km	90°C in	Ohm/km	cable at 50HZ	in micro F/Km	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu	in ohms/km								Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
95	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
240	0.125	0.0754	0.162	0.098	0.072	0.31	325	270	402	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.071	0.33	370	305	461	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE & HALF CORE, AL/COPPER COND., XLPE INSULATED, UN-ARMOURED CABLES

Cable Code - A2XY/2XY Ref Specification : IS : 7098PART-1

PHYSICAL PARAMETERS

SIZE Cross- sectional	stra	m No of inds ductor	Nominal Thickness of Insulation)	Minimum Thickness of inner sheath	Nominal thickness of OUTER	Approx.		. Net Wt (Kg/KM)
area	Phase /	Neutral	Phase / Neutra		Sheath	Diameter	With Al cond	With Cu Cond.
(sqmm)			(mm)	(mm)	(mm)	(mm)	A2XY	2XY
3x25+16	6/6	6/6	0.90/0.70	0.30	2.00	22	600	1150
3x35+16	6/6	6/6	0.90/0.70	0.30	2.00	24	700	1450
3x50+25	6/6	6/6	1.00/0.90	0.30	2.00	27	900	2000
3x70+35	12/6	12/6	1.10/0.90	0.40	2.20	31	1200	2700
3x95+50	15/6	15/6	1.10/1.00	0.40	2.20	34	1500	3600
3x120+70	15/12	18/12	1.20/1.10	0.40	2.20	38	1900	4500
3x150+70	15/12	18/12	1.40/1.10	0.50	2.40	43	2300	5500
3x185+95	30/15	30/15	1.60/1.10	0.50	2.60	46	2800	6800
3x240+120	30/15	34/1/	1.70/1.20	0.60	2.80	52	3600	8700
3x300+150	30/15	34/18	1.80/1.40	0.60	3.00	57	4400	10800
3x400+185	53/30	53/30	2.00/1.60	0.70	3.40	65	5600	14000
3x500+240	53/30	53/34	2.20/1.70	0.70	3.60	73	7000	17500
3x630+300	53/30	53/34	2.40/1.80	0.70	4.00	82	8900	22000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: Standed compacted shaped as per Class - 2 of IS:8130

INNER SHEATH : PVC as per IS : 7098PT-1

INSULATION : Crosslinked Polyethylene (XLPE)
- (Phase - Red, Yellow, Blue & neutral - Black colour)

OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE / FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : any other colour as per requirement.

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICAL DADAMETERS

SIZE	Max. Co	nd. D.C.	Approx,	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Current	Rating in	Amps		Short Circu	uit Current
cross-sectional	Resista	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With 0	Copper	cond.	Rating for 18	Sec.duration
area (Sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu									Al	Cu
3x25+16	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	2.35	2.35	3.58
3x35+16	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	3.29	3.29	5.01
3x50+25	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	4.70	4.70	7.15
3x70+35	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	6.58	6.58	10.01
3x95+50	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	8.93	8.93	13.59
3x120+70	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	11.28	11.28	17.16
3x150+70	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	14.10	14.10	21.45
3x185+95	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	17.39	17.39	26.46
3x240+120	0.125	0.0754	0.162	0.098	0.072	0.31	325	270	402	410	350	22.56	22.56	34.32
3x300+150	0.100	0.0601	0.130	0.078	0.071	0.33	370	305	461	460	390	28.20	28.20	42.90
3x400+185	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	37.60	37.60	57.20
3x500+240	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	47.00	47.00	71.50
3x630+300	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	59.22	59.22	90.09

TECHNICAL DETAIL FOR DICABS 1.1 KV FOUR CORE, AL/COPPER COND., XLPE INSULATED, UN-ARMOURED CABLES

Cable Code - A2XY/2XY

Ref Specification : IS : 7098PART-1

SIZE Cross- sectional	Minir No Stran	of	Nominal Thickness of	Minimum Thickness of	Minimum Thickness of outer sheath	Approx. over all	Approx, of cable	
area	Cond	uctor	(Insulation)	inner sheath		Diameter	With Al cond	With Cu cond
(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	A2XY	2XY
4		1/7	0.7	0.30	1.80	17	250	350
6	1	1/7	0.7	0.30	1.80	18	350	500
10	1	6	0.7	0.30	1.80	20	400	650
16	6	6	0.7	0.30	1.80	20	450	850
25	6	6	0.9	0.30	2.00	24	660	1300
35	6	6	0.9	0.30	2.00	26	800	1700
50	6	6	1.0	0.30	2.00	29	1000	2200
70	12	12	1.1	0.40	2.20	34	1400	3100
95	15	15	1.1	0.40	2.20	37	1700	4000
120	15	18	1.2	0.50	2.40	41	2150	5150
150	15	18	1.4	0.50	2.60	45	2650	6350
185	30	30	1.6	0.50	2.80	50	3250	7850
240	30	34	1.7	0.60	3.00	56	4100	10000
300	30	34	1.8	0.70	3.20	63	5050	12050
400	53	53	2.0	0.70	3.60	70	6400	16000
500	53	53	2.2	0.70	3.80	79	8000	20000
630	53	53	2.4	0.70	4.00	88	10000	26000

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond:-6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped

~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above : Stranded compacted shaped

OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '---OPTIONS : FR TYPE/FRLS TYPE

INSULATION : Crosslinked Polyethylene (XLPE) (Red, Yellow, Blue & Black colour)

INNERSHEATH: PVC as per IS: 7098PT-1

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : any other colour as per requirement.

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose.

~ Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICAL DARAMETERS

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Normal	* Curren	t Rating in	Amps		Short Circu	uit Current
cross-sectional	Resist	ance at	Resis	tance at	of cable at	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1S	
area (Sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	50HZ	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
	Al	Cu	Al	Cu	in ohms/km								Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
95	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	394	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
240	0.125	0.0754	0.162	0.098	0.072	0.31	325	270	402	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.071	0.33	370	305	461	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

TARLE . 18

TECHNICAL DETAIL FOR DICABS 1.1 KV SINGLE CORE, AL/COPPER COND., XLPE INSULATED, AL WIRE/STRIP ARMOURED CABLES

Cable Code - A2XFay/2XFaY, A2XWaY/2XWaY

Ref Specification: IS: 7098PART-1

PHYSICAL	PARAMETERS
----------	------------

SIZE	Minin	num	Nominal	ARMO	DURING WITH F	LAT STRIP	(A2XFaY/2XF	aY)	ARMOU	RING WITH RO	DUND WIF	IES (A2XWa	Y/2XWaY)
Cross-	No		Thickness of	Nominal	Minimum	Approx.	Approx.	Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional	Stran		(Insulation)	Thickness	Thickness of	Overall	of cable	(Kg/KM)	Diameter	Thickness of	Overall	of cable (Kg/KM)
area	Cond	uctor		Strip	outer sheath	Diameter	With Al Cond	With Cu Cond.	of wire	outer sheath	Diameter	With Al Cond.	With Cu Con
(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	A2XFaY	2XFaY	(mm)	(mm)	(mm)	A2XWaY	2XWaY
4		1/7	1.0	N/A	N/A	N/A	N/A	N/A	1.40	1.24	10	90	130
6	1	1/7	1.0	N/A	N/A	N/A	N/A	N/A	1.40	1.24	11	130	170
10	1	6	1.0	N/A	N/A	N/A	N/A	N/A	1.40	1.24	12	160	22
16	6	6	1.0	N/A	N/A	N/A	N/A	N/A	1.40	1.24	13	200	300
25	6	6	1.2	N/A	N/A	N/A	N/A	N/A	1.40	1.24	14	300	455
35	6	6	1.2	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	350	567
50	6	6	1.3	N/A	N/A	N/A	N/A	N/A	1.40	1.24	17	420	730
70	12	12	1.4	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	520	954
95	15	15	1.4	0.80	1.40	21	600	1195	1.60	1.40	22	650	1235
120	15	18	1.5	0.80	1.40	23	700	1450	1.60	1.40	24	750	1494
150	15	18	1.7	0.80	1.40	24	800	1730	1.60	1.40	25	850	1780
185	30	30	1.9	0.80	1.40	26	950	2100	1.60	1.40	28	1000	2147
240	30	34	2.0	0.80	1.40	30	1200	2690	1.60	1.40	30	1250	2788
300	30	34	2.1	0.80	1.56	32	1400	3270	1.60	1.56	33	1500	3360
400	53	53	2.4	0.80	1.56	36	1750	4230	2.00	1.56	38	1900	4380
500	53	53	2.6	0.80	1.56	39	2150	5250	2.00	1.56	41	2350	5450
630	53	53	2.8	0.80	1.72	44	2700	6610	2.00	1.72	46	2900	6806
800	53	53	3.1	0.80	1.72	48	3350	8320	2.00	1.88	51	3600	8560
1000	53	53	3.3	0.80	1.88	54	4100	10300	2.50	2.04	56	4600	10800

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: 6 & 10 SQMM-Solid circular, 16 sq. mm & above: Standed compacted shaped —Copper Cond: 4.8 & sq. mm-solid; stranded one compacted circular, 10 sq. mm Stranded compacted circular,

ARMOURING : Single layer of Aluminium Round wires / Flat Strips

wires / Flat Strips

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : any other colour as per requirement.

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose ~ Please ref page no 43 for normal delivery lengths & packing details.

INSULATION : Crosslinked Polyethylene (XLPE) (Natural colour)

OUTER SHEATH: PVC TYPE ST-2 OF IS: 5831 '---OPTIONS: PVC TYPE

ELECTRICAL PARAMETERS

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal* Cur	rent Rating	g in Am	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1:	
area (sq MM)		Ohm/km		Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air		Amps
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.90	0.152	0.22				48	47	45	0.376	0.572
6	4.61	3.08	5.90	3.94	0.144	0.26	45	45	40	60	59	57	0.56	0.858
10	3.08	1.83	3.94	2.34	0.133	0.31	59	62	53	80	78	77	0.94	1.43
16	1.91	1.15	2.44	1.47	0.122	0.40	76	80	73	104	102	106	1.50	2.29
25	1.20	0.727	1.54	0.931	0.116	0.40	99	90	115	130	115	145	2.35	3.58
35	0.868	0.524	1.11	0.671	0.110	0.47	117	110	140	155	140	175	3.29	5.01
50	0.641	0.387	0.820	0.495	0.103	0.50	138	125	170	185	165	215	4.70	7.15
70	0.443	0.268	0.567	0.343	0.099	0.55	168	155	210	225	200	270	6.58	10.01
95	0.320	0.193	0.411	0.248	0.097	0.64	204	185	255	265	235	330	8.93	13.59
120	0.253	0.153	0.325	0.197	0.093	0.67	230	210	300	300	265	380	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.091	0.67	265	230	342	335	300	430	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.090	0.67	295	260	385	380	335	495	17.39	26.46
240	0.125	0.0754	0.162	0.0976	0.086	0.72	340	300	450	435	385	590	22.59	34.32
300	0.100	0.0601	0.130	0.0778	0.085	0.75	390	335	519	490	430	670	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.085	0.75	450	380	605	550	480	780	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.083	0.77	500	430	700	610	530	900	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.082	0.81	555	485	809	680	590	1020	59.22	90.09
800	0.0367	0.0221	0.0530	0.0319	0.081	0.88	625	530	935	740	630	1140	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.081	0.88	690	570	1065	780	660	1250	94.00	143.00

TECHNICAL DETAIL FOR DICABS 1.1 KV TWO CORES, AL/COPPER COND., XLPE INSULATED, GALVANIZED STEEL WIRE/STRIPARMOURED CABLES

Cable Code - A2xFy/2xFY, A2XWY/2XWY

DUNGLOS DADAMETERS

Ref Specification: IS: 7098PART-1

			METER											
SIZE		mum	Nominal	Minimum		OURING WITH I	FLAT STRIF	(A2XFY/2XF	-Y)	ARMO	URING WITH	ROUND W	IRES (A2XV	VY/2XWY)
Cross-		of	Thickness	Thickness		Minimum	Approx.	Approx.	Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional		nds in	of	of	Thickness	Thickness of	Overall	of cable		Diameter	Thickness of	Overall	of cable (
area		luctor	(Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al Cond.	With Cu Cond	of wire	outer sheath	Diameter	With Al Cond.	With Cu Con
(sqmm)	Al	Cu	(mm)	(mm)	(mm)	(mm)	(mm)	A2XFY	2XFY	(mm)	(mm)	(mm)	A2XWaY	2XWaY
4		1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	500	550
6	1	1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	16	550	600
10	1	6	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	650	770
16	6	6	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.40	19	700	900
25	6	6	0.9	0.30	0.80	1.40	20	650	950	1.60	1.40	21	850	1150
35	6	6	0.9	0.30	0.80	1.40	21	750	1200	1.60	1.40	23	950	1400
50	6	6	1.0	0.30	0.80	1.40	23	900	1500	1.60	1.40	25	1100	1700
70	12	12	1.1	0.30	0.80	1.56	26	1100	1950	1.60	1.56	28	1400	2250
95	15	15	1.1	0.40	0.80	1.56	29	1350	2500	2.00	1.56	31	1850	3000
120	15	18	1.2	0.40	0.80	1.56	31	1600	3100	2.00	1.56	34	2150	3600
150	15	18	1.4	0.40	0.80	1.72	34	1900	3750	2.00	1.72	37	2450	4300
185	30	30	1.6	0.50	0.80	1.72	37	2250	4500	2.00	1.88	40	2900	5200
240	30	34	1.7	0.50	0.80	1.88	42	2800	5800	2.50	2.04	45	3850	6800
300	30	34	1.8	0.60	0.80	2.04	45	3300	7000	2.50	2.20	49	4450	8200
400	53	53	2.0	0.60	0.80	2.36	50	4100	9050	2.50	2.36	52	5350	10300
500	53	53	2.2	0.70	0.80	2.52	55	5000	11000	3.15	2.68	60	7100	13300
630	53	53	2.4	0.70	0.80	2.68	63	6100	14000	3.15	2.84	66	8500	16300

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: 6 & 10 SQMM-Solid circular, 16 sq. mm & above : Standed compacted shaped

~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above : Stranded compacted shaped

ARMOURING: Single layer of Galvanized steel-Round wires / Flat Strips INNERSHEATH: PVC as per IS: 7098 PT-1

INSULATION : Crosslinked Polyethylene (XLPE) (Red & Black Colour)

OUTER SHEATH: PVC TYPE ST-2 OF IS: 5831 '---OPTIONS: FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement. ~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

- Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal* Cur	rent Rating	g in Amp	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in			Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air		Amps
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.1
95	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
240	0.125	0.0754	0.162	0.0976	0.072	0.31	325	270	402	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.0778	0.071	0.33	370	305	461	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE CORES, AL/COPPER COND., XLPE INSULATED, GALVANIZED STEEL WIRE/STRIPARMOURED CABLES

Cable Code - A2XFY/2XFY, A2XWY/2XWY

Ref Specification: IS: 7098PART-1

SIZE		mum	Nominal	Minimum	ARM	OURING WITH I	FLAT STRIF	(A2XFY/2XI	=Y)	ARMO	URING WITH	ROUND W	IRES (A2XV	VY/2XWY)
Cross-		of	Thickness	Thickness	Nominal	Minimum	Approx.	Approx.	Net Wt	Nominal	Minimum	Approx.	Approx. I	Net Wt
-sectional	Stran		of	of	Thickness	Thickness of	Overall	of cable		Diameter	Thickness of	Overall	of cable (
area	Cond		(Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al Cond.	With Cu Cond	of wire	outer sheath	Diameter	With Al Cond.	With Cu Cor
(sqmm)	Al	Cu	(mm)	(mm)	strip (mm)	(mm)	(mm)	A2XFY	2XFY	(mm)	(mm)	(mm)	A2XWaY	2XWaY
4		1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	600	670
6	1	1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	650	770
10	1	6	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	20	750	930
16	6	6	0.7	0.30	0.8	1.24	19	600	600	1.60	1.40	20	800	1100
25	6	6	0.9	0.30	0.8	1.40	21	800	1200	1.60	1.40	23	1000	1450
35	6	6	0.9	0.30	0.8	1.40	23	950	1500	1.60	1.40	25	1200	1850
50	6	6	1.0	0.30	0.8	1.40	26	1100	2000	1.60	1.56	29	1450	2300
70	12	12	1.1	0.30	0.8	1.56	29	1450	2700	2.00	1.56	32	2000	3300
95	15	15	1.1	0.40	0.8	1.56	32	1750	3500	2.00	1.56	35	2350	4100
120	15	18	1.2	0.40	0.8	1.56	35	2100	4200	2.00	1.72	39	2750	4900
150	15	18	1.4	0.40	0.8	1.72	42	2500	5200	2.00	1.88	43	3250	6000
185	30	30	1.6	0.50	0.8	1.88	44	3000	6300	2.50	2.04	48	4200	7500
240	30	34	1.7	0.50	0.8	2.04	49	3750	8200	2.50	2.20	53	5100	9500
300	30	34	1.8	0.60	0.8	2.20	54	4500	10000	2.50	2.36	58	6000	11300
400	53	53	2.0	0.70	0.8	2.52	60	5600	13000	3.15	2.68	65	7950	15200
500	53	53	2.2	0.70	0.8	2.68	66	6900	16000	3.15	2.84	72	9500	18500
630	53	53	2.4	0.70	0.8	2.84	74	8550	20000	4.00	3.00	81	12600	23700

CROSS-SECTIONAL VIEW

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond:- 6 & 10 SQMM-Solid circular. 16 sq. mm & above : Standed compacted shaped

~Copper. Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular, 16sqmm & above : Stranded compacted shaped

ARMOURING : Single layer of Galvanized steel -Round wires / Flat Strips OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE/FRLS TYPE

INSULATION: Crosslinked Polyethylene (XLPE) (Red. Yello, Blue)

INNERSHEATH: PVC as per IS: 7098 PT-1

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement

~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose...

~ Please ref page no 43 for normal delivery lengths & packing details.

FLECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal* Cui	rent Rating	g in Amp	os	Short Circ	uit Current
cross-sectional	Resista	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1 5	
area (sq MM)	20°C in		90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
400	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
95	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
240	0.125	0.0754	0.162	0.0976	0.072	0.31	325	270	402	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.0778	0.071	0.33	370	305	461	460	390	590	28.20	42.90
400	0.0778	0.0470		0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366		0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

TABLE . 21

TECHNICAL DETAIL FOR DICABS 1.1 KV THREE AND HALF CORES, AL/COPPER COND., XLPE INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES

Cable Code - 3.5 Core - A2XFY/2XFY, A2XWY/2XWY Ref Specification : IS : 7098PART-1

PHYSICAL PARAMETERS

SIZE	Min	imum	Nominal	Minimum	ARMO	URING WITH	LAT STRI	P (A2XFY/	2XFY)	ARMOU	RING WITH R	OUND WIF	RES (A2XW)	(/2XWY)
Cross-	N	o of	Thickness	Thickness	Nominal	Minimum	Approx.	Approx	k. Net Wt	Nominal	Minimum	Approx.	pprox.	Net Wt
-sectional	Stra	nds in	of	of	Thickness	Thickness of	Overall	of cable	(Kg/KM)	Diameter	Thickness of	Overall	of cable	(Kg/KM)
area	Con	ductor	(Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al Cond.	With Cu Cond	of wire	outer sheath	Diameter	With Al Cond.	With Cu Cond
(sqmm)	Al	Cu	(mm)	(mm)	strip (mm)	(mm)	(mm)	A2XFY	2XFY	(mm)	(mm)	(mm)	A2XWY	2XWY
3X25+16	6/6	6/6	0.90/0.70	0.30	0.80	1.40	23	900	1400	1.60	1.40	25	1100	1700
3X35+16	6/6	6/6	0.90/0.70	0.30	0.80	1.40	25	1000	1800	1.60	1.40	27	1300	2000
3X50+25	6/6	6/6	1.00/0.90	0.30	0.80	1.40	28	1200	2300	1.60	1.56	30	1600	2700
3X70+35	12/6	12/6	1.10/0.90	0.40	0.80	1.56	32	1600	3200	2.00	1.56	35	2200	3700
3X95+50	16/6	15/6	1.10/1.00	0.40	0.80	1.56	35	2000	4100	2.00	1.56	38	2600	4600
3X120+70	15/12	18/12	1.20/1.10	0.40	0.80	1.72	39	2400	5100	2.00	1.72	42	3100	5700
3X150+70	15/12	18/12	1.40/1.10	0.50	0.80	1.72	43	2800	6000	2.00	1.88	46	3600	6800
3X185+95	30/15	30/15	1.60/1.10	0.50	0.80	1.88	47	3400	7400	2.50	2.04	51	4700	8700
3X240+120	30/15	34/1/	1.70/1.20	0.60	0.80	2.04	53	4300	9500	2.50	2.20	56	5700	10500
3X300+150	30/15	34/18	1.80/1.40	0.60	0.80	2.20	57	5000	11500	2.50	2.36	60	6700	13000
3X400+185	53/30	53/30	2.00/1.60	0.70	0.80	2.52	66	6400	14500	3.15	2.68	71	9000	17000
3X500+240	53/30	53/34	2.20/1.70	0.70	0.80	2.68	74	7900	18000	3.15	2.84	79	11000	21500
3X630+300	53/30	53/34	2.40/1.80	0.70	0.80	3.00	82	9900	23000	4.00	3.00	88	14500	28000

CROSS-SECTIONAL VIEW

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

- ~ Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose..
- Please ref page no 43 for normal delivery lengths & packing details.

FLECTRICAL PARAMETERS

L PAH	AMET	ERS											
Max. Co	nd. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal* Cui	rent Rating	g in Amp	os	Short Circ	uit Current
Resist	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.		
20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. /	lmps
Al	Cu	Al	Cu									Al	Cu
1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
0.125	0.0754	0.162	0.098	0.072	0.31	325	270	402	410	350	510	22.56	34.32
0.100	0.0601	0.130	0.078	0.071	0.33	370	305	461	460	390	590	28.20	42.90
0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09
	Max. Co Resists 20°C in Al 1.20 0.868 0.641 0.443 0.320 0.253 0.206 0.164 0.125 0.100 0.0778	Max. Cond. D.C. Resistance at 1 20°C in Ohm/km Al Cu 1.20 0.727 0.868 0.524 0.641 0.387 0.443 0.268 0.253 0.153 0.260 0.1240 0.164 0.0991 0.125 0.0754 0.1078 0.0470 0.0778 0.0470 0.0605 0.0366	Resistance at 2 CVC in OFmin/km 90°C in Mr. 2 No. 2 N	Max. Cord. D.C Approx. Cord. A.C	Max. Cord. D.C. Sprox. Cord. A.C. Spr. Reactions of lensistance at Spr. Reaction Spr	Max. Cord. D.C. Approx. Cord. A.C. App. Reactance App. Capcellance App. Reactance App. Capcellance App. Reactance App. Capcellance App. Reactance App. React	Max. Cond. D.C Approx. Cond. A.C App. Residence App. Capper lance With A College App. Capper lance App. Capper lance With A College App. Capper lance App. Capper lance	Max. Cord. DC Approx. Cord. AC App. Rescharce App. Cappetines Max. Cord. AC App. Rescharce App. Cappetines App. Cappetines	Max. Cord. D.C. Approx. Cord. A.C. App. Reactance App. Capocharo App. Capocharo	Max. Cond. D.C Approx. Cond. A.C. App. Rescharce App. Capperlatero Telescharce Normal* Course Telescharce Normal* Course Nor	Max. Cord. DC Approx. Cord. AC App. Rescharce App. Cappetines Max. Cord. AC App. Rescharce App. Cappetines App. Cappetines	Max. Cord. D.C. Approx. Cord. A.C. App. Reactance App. Capocitine Proceedings App. Capocitine Procedings Ap	Max. Cord. DC Approx. Cord. AC App. Reschatce App. Capp.chine Max. Cord. DC App. Capp.chine App. Capp.chine Max. Cord. DC App. Capp.chine Max. Capp.

TECHNICAL DETAIL FOR DICABS 1.1 KV FOUR CORES, AL/COPPER COND., XLPE INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY/2XWY

Ref Specification: IS: 7098PART-1

	PHYSICAL	. PARAN	IETERS
--	----------	---------	--------

SIZE	Mini	mum	Nominal	Minimum	ARMO	URING WITH F	LAT STRIP			ARMOU	RING WITH RO	DUND WIF	RES (A2XW)	Y/2XWY)
Cross-	No	of	Thickness	Thickness	Nominal	Minimum	Approx.		. Net Wt	Nominal	Minimum	Approx.	Approx.	Net Wt
-sectional	Strar	nds in	of	of	Thickness	Thickness of	Overall	of cable		Diameter	Thickness of	Overall	of cable	
area	Conc	luctor	(Insulation)	inner Sh.	of armour	outer sheath	Diameter	With Al Cond.	With Cu Cond.	of wire	outer sheath	Diameter	With Al Cond.	With Cu Cond
(sqmm)	Al	Cu	(mm)	(mm)	strip (mm)	(mm)	(mm)	A2XFY	2XFY	(mm)	(mm)	(mm)	A2XWY	2XWY
4	***	1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	18	550	650
6	1	1/7	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.24	19	600	750
10	1	6	0.7	0.30	N/A	N/A	N/A	N/A	N/A	1.40	1.40	21	670	950
16	6	6	0.7	0.30	0.80	1.40	20	700	1100	1.60	1.40	22	925	1300
25	6	6	0.9	0.30	0.80	1.40	24	900	1500	1.60	1.40	26	1200	1770
35	6	6	0.9	0.30	0.80	1.40	27	1100	2000	1.60	1.40	28	1450	2200
50	6	6	1.0	0.30	0.80	1.56	30	1400	2500	1.60	1.56	32	1750	2850
70	12	12	1.1	0.40	0.80	1.56	34	1800	3400	2.00	1.56	37	2400	4000
95	15	15	1.1	0.40	0.80	1.56	37	2200	4400	2.00	1.72	40	2900	5150
120	15	18	1.2	0.50	0.80	1.72	41	2700	5600	2.00	1.88	44	3500	6300
150	15	18	1.4	0.50	0.80	1.88	46	3200	6800	2.50	2.04	49	4500	8000
185	30	30	1.6	0.50	0.80	2.04	51	3900	8300	2.50	2.20	54	5200	9700
240	30	34	1.7	0.60	0.80	2.20	57	4850	10500	2.50	2.36	65	6400	12000
300	30	34	1.8	0.70	0.80	2.36	63	5850	13000	3.15	2.52	68	8300	15400
400	53	53	2.0	0.70	0.80	2.68	71	7320	17000	3.15	2.84	76	10000	19500
500	53	53	2.2	0.70	0.80	2.84	79	9000	21000	4.00	3.00	86	13500	25000
630	53	53	2.4	0.70	0.80	3.00	88	11000	27000	4.00	3.00	94	16000	30500

CROSS-SECTIONAL VIEW

INNERSHEATH: PVC as per IS: 7098 PT-1

CONDUCTOR: MATERIAL: Aluminium / Copper *Shape: ~AL. Cond: - 6 & 10 SQMM-Solid circular. 16 sq. mm & above : Standed compacted shaped

~Copper, Cond :- 4 & 6 sq. mm-solid / stranded non compacted circular, 10 sq. mm Stranded compacted circular,

16sqmm & above : Stranded compacted shaped

ARMOURING: Single layer of Galvanized steel Round wires / Flat Strips

INSULATION : Crosslinked Polyethylene (XLPE) (Red, Yello, Boue & Black Colour)

OUTER SHEATH : PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK, OPTIONS : any other colour as per requirement. - Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose. ~ Please ref page no 43 for normal delivery lengths & packing details.

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	App. Reactance	App. Capecitance		Nor	mal* Cui	rent Rating	in Am	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	of cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu									Al	Cu
4		4.61		5.90	0.098	0.11	34	28	30	44	37	39	0.376	0.572
6	4.61	3.08	5.90	3.94	0.090	0.13	43	37	40	55	47	50	0.564	0.858
10	3.08	1.83	3.94	2.34	0.084	0.16	57	48	53	74	61	67	0.940	1.430
16	1.91	1.15	2.44	1.47	0.080	0.18	78	61	70	94	78	85	1.50	2.29
25	1.20	0.727	1.54	0.931	0.080	0.20	95	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.080	0.23	116	94	117	145	120	155	3.29	5.01
50	0.641	0.387	0.820	0.495	0.078	0.24	140	110	140	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.077	0.26	170	140	176	210	175	235	6.58	10.01
95	0.320	0.193	0.411	0.248	0.074	0.29	200	165	221	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.072	0.29	225	185	258	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.072	0.29	255	210	294	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.072	0.29	285	235	339	355	300	435	17.39	26.46
240	0.125	0.0754	0.162	0.0976	0.072	0.31	325	270	402	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.0778	0.071	0.33	370	305	460	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.070	0.33	435	350	542	520	440	670	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.070	0.34	481	405	624	580	480	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.069	0.36	537	470	723	680	575	875	59.22	90.09

TECHNICAL DETAIL FOR DICABS 3.3 KV SINGLE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XWaY/2XWaY (3.3KV-EARTHED/UNEARTHED GRADE)

Ref Specification: IS: 7098PART-2

DHYSICAL DADAMETEDS

SIZE cross-Sectional area (Sgmm)	Nominal Insulation thickness	Nominal Diameter of Armour Wire (mm)	Minimum Thickness of Outer Sheath (mm)	Approx. Over all Diameter		orox, t (kg/km)
area (oqiiiii)	(mm)	(1111)	(1111)	(mm)	With Al. Cond.	With Cu Cond
25	2.5	1.40	1.24	18	350	500
35	2.5	1.40	1.24	19	400	600
50	2.5	1.40	1.40	21	500	800
70	2.5	1.60	1.40	23	650	1100
95	2.5	1.60	1.40	25	750	1350
120	2.5	1.60	1.40	26	850	1600
150	2.5	1.60	1.40	28	950	1900
185	2.5	1.60	1.40	29	1100	2250
240	2.5	1.60	1.56	32	1350	2850
300	2.5	1.60	1.56	34	1550	3400
400	2.8	2.00	1.56	39	2000	4500
500	2.8	2.00	1.56	42	2400	5500
630	3.0	2.00	1.72	47	3000	6900
800	3.3	2.00	1.88	52	3650	8600
1000	3.5	2.50	2.04	56	4500	10700

CROSS-SECTIONAL VIEW

OUTER SHEATH:

PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : ANY OTHER COLOURS AS PER REQUIREMENT

~Tabulated approx. net weights of cables are only for guidelines for transportation/loading/unloading purpose.

ELECTRICAL PARAMETERS

area (sq MM) 20°4 A 25	esistance at C in Ohm/ki		tance at		Capecitance				rent Rating				uit Current
25 1.20 35 0.86 50 0.64 70 0.44 95 0.33 120 0.25 150 0.20				of cable at 50HZ	of cable		luminiur			Copper		Rating for 1	
25 1.20 35 0.86 50 0.64 70 0.44 95 0.32 120 0.25 150 0.20	AI Cu		Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	
35 0.86 50 0.64 70 0.44 95 0.32 120 0.25 150 0.20		Al	Cu	(Approx.)	(Approx.)							Al	Cu
50 0.64 70 0.44 95 0.32 120 0.25 150 0.20	0 0.727	1.54	0.931	0.133	0.25	100	91	110	130	115	145	2.35	3.58
70 0.44 95 0.32 120 0.25 150 0.20	68 0.524	1.11	0.671	0.126	0.29	120	110	135	155	140	175	3.29	5.00
95 0.32 120 0.25 150 0.20	41 0.387	0.820	0.495	0.122	0.33	140	125	165	185	165	215	4.70	7.15
120 0.25 150 0.20	43 0.268	0.567	0.343	0.116	0.38	175	155	210	225	200	270	6.58	10.00
150 0.20	20 0.193	0.410	0.248	0.111	0.44	205	185	255	265	235	330	8.93	13.59
	53 0.153	0.325	0.197	0.106	0.49	235	210	295	300	265	380	11.28	17.16
	06 0.124	0.265	0.159	0.103	0.53	260	230	335	335	300	430	14.10	21.45
185 0.16	64 0.099	0.211	0.127	0.100	0.58	295	260	390	380	335	495	17.39	26.45
240 0.12	25 0.075	0.162	0.098	0.097	0.67	340	300	460	435	385	590	22.56	34.32
300 0.10	0.060	0.130	0.078	0.095	0.73	385	335	530	490	430	670	28.20	42.90
400 0.07	778 0.047	0.1023	0.0618	0.093	0.84	440	380	620	550	480	780	37.60	57.20
500 0.06	605 0.036	0.0808	0.0489	0.091	0.86	495	430	730	610	530	900	47.00	71.50
630 0.04	469 0.028	0.0648	0.0391	0.090	0.88	560	485	840	680	590	1020	59.22	90.10
800 0.03	367 0.022	0.0530	0.0319	0.088	0.94	620	530	960	740	630	1140	75.20	114.40
1000 0.02	291 0.017	0.0444	0.0268	0.086	0.99	670	570	1070	780	660	1250	94.00	143.00

TECHNICAL DETAIL FOR DICABS 3.3 KV THREE CORES, AL/COPPER COND., XLPE INSULATED. ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY/2XWY (3.3KV UE/E)

Ref Specification: IS: 7098PART-2

PHYSICAL PARAMETER	S
--------------------	---

										ROUNE	WIRES ARMOURE	D
SIZE cross-		Minimum Inner Sheath		Minimum outer Sheath	Approx. Over all		orox. (kg / km)	Nominal diameter	Minimum outer Sheath	Approx. Overall	App cable w	
sectional area(Sqmm)	thickness mm	thickness mm	thickness mm	thickness mm	Diameter (mm)	With Al.	With Cu	of armoure wire (mm)	thickness mm	Diameter (mm)	With Al. Cond.	With Cu. Cond.
25	2.2	0.3	0.8	1.40	28	1100	1550	1.60	1.56	30	1450	1900
35	2.2	0.3	0.8	1.56	31	1300	1950	1.60	1.56	33	1600	2250
50	2.2	0.4	0.8	1.56	33	1500	2450	2.00	1.56	35	2100	3050
70	2.2	0.4	0.8	1.56	36	1800	3100	2.00	1.56	38	2400	3700
95	2.2	0.4	0.8	1.72	39	2150	3900	2.00	1.72	42	2850	4600
120	2.2	0.5	0.8	1.72	42	2500	4750	2.00	1.88	45	3300	5550
150	2.2	0.5	0.8	1.88	44	2850	5650	2.50	2.04	48	4100	6900
185	2.2	0.5	0.8	2.04	48	3350	6800	2.50	2.04	51	4650	8100
240	2.2	0.6	0.8	2.20	52	4100	8550	2.50	2.20	56	5450	9900
300	2.2	0.6	0.8	2.20	56	4750	10350	2.50	2.36	60	6300	11900
400	2.2	0.7	0.8	2.36	62	5750	13200	3.15	2.68	67	8350	15800

CROSS-SECTIONAL VIEW

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: any other colour as per requirement.

- \sim Tabulated approx. net wt. of cables are only guidelines for transportation, loading & unloading purpose..
- \sim Please ref page no 43 for normal delivery lengths & packing details.

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	AppReactance	App. Capecitance		Non	mal* Cui	rent Rating	in Amp	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1 5	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K. A	Amps
200	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.098	0.25	94	80	99	120	100	125	2.35	3.58
35	0.868	0.524	1.11	0.671	0.094	0.29	115	95	120	145	120	155	3.29	5.00
50	0.641	0.387	0.820	0.495	0.086	0.33	135	110	145	170	145	190	4.70	7.15
70	0.443	0.268	0.567	0.343	0.084	0.38	165	140	185	210	175	235	6.58	10.00
95	0.320	0.193	0.410	0.248	0.081	0.44	195	165	225	250	210	290	8.93	13.59
120	0.253	0.153	0.325	0.197	0.078	0.49	220	185	255	285	240	330	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.076	0.53	245	210	295	315	270	375	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.075	0.58	280	235	340	355	300	435	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.073	0.67	320	270	400	410	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.072	0.73	360	305	460	460	390	590	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.071	0.84	410	350	535	520	440	670	37.60	57.20

TABLE - 25

TECHNICAL DETAIL FOR DICABS 3.8/6.6 KV SINGLE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code : A2XWaY/2XWaY, (6.6KV-EARTHED GRADE)

Ref Specification: IS: 7098PART-2

SIZE	Nominal	Minimum	Nominal Diameter	Minimum Thickness	Approx.	Appr	ox.
cross-Sectional	Insulation	Inner Sheath	of Armour Wire	of Outer Sheath	Over all	cable wt	kg/km)
area (Sqmm)	thicknes	thickness	(mm)	(mm)	Diameter	With Al. Cond.	With Cu., Cond
	mm	mm			(mm)		
25	2.8	0.3	1.60	1.40	23	600	750
35	2.8	0.3	1.60	1.40	24	650	850
50	2.8	0.3	1.60	1.40	25	700	1000
70	2.8	0.3	1.60	1.40	27	800	1250
95	2.8	0.3	1.60	1.40	28	950	1550
120	2.8	0.3	1.60	1.40	30	1050	1800
150	2.8	0.3	1.60	1.56	32	1200	2100
185	2.8	0.3	1.60	1.56	34	1400	2550
240	2.8	0.4	2.00	1.56	37	1700	3200
300	3.0	0.4	2.00	1.56	39	2000	3850
400	3.3	0.4	2.00	1.72	44	2450	4900
500	3.5	0.5	2.00	1.72	47	2800	5900
630	3.5	0.5	2.00	1.88	51	3400	7300
800	3.5	0.5	2.50	2.04	57	4300	9200
1000	3.6	0.5	2.50	2.20	61	5100	11300

CROSS-SECTIONAL VIEW

OUTER SHEATH :
PVC TYPE ST-2 OF IS : 5831 '--- OPTIONS : PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT ~ Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	App. Capecitance		Nor	mal* Cur	rrent Rating	g in Am	os	Short Circ	uit Current
cross-sectional	Resista	ance at	Resis	tance at	cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.149	0.21	100	90	120	130	115	155	22.35	3.58
35	0.868	0.524	1.11	0.671	0.142	0.24	120	105	145	155	140	185	3.29	5.00
50	0.641	0.387	0.820	0.495	0.133	0.27	140	125	170	185	160	220	4.70	7.15
70	0.443	0.268	0.567	0.343	0.127	0.31	175	155	215	225	195	275	6.58	10.00
95	0.320	0.193	0.410	0.248	0.121	0.36	205	180	260	265	235	340	8.93	13.59
120	0.253	0.153	0.325	0.197	0.116	0.39	235	205	305	300	265	390	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.113	0.43	260	230	345	335	295	440	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.109	0.47	295	260	395	380	330	510	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.105	0.53	340	300	470	435	380	600	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.104	0.54	385	335	540	490	425	680	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.102	0.57	440	380	630	550	480	790	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.100	0.60	495	430	730	610	530	910	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.096	0.67	560	480	840	680	580	1030	59.22	90.10
800	0.0367	0.0221	0.0530	0.0319	0.094	0.76	620	530	960	740	630	1140	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.092	0.82	680	580	1070	790	670	1250	94.00	143.00

TABLE - 26

TECHNICAL DETAIL FOR DICABS 3.8/6.6 KV THREE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY,2XWY (6.6KVE)

Ref Specification: IS: 7098PART-2

PHYSICAL	_ PARAN	IETERS
----------	---------	--------

				FLAT STE	RIP ARMOL	IRED				ROUND	WIRES ARMOUR	ED
SIZE	Nominal	Minimum	Nominal	Minimum	Approx.	App	orox.	Nominal	Minimum	Approx.		rox.
cross-		Inner Sheath		outer Sheath	Over all	cable w	t (kg/km)	diameter	outer Sheath		cable w	(kg/km)
sectional	thickness	thickness	thickness	thickness	Diameter	With Al.	With Cu	of armour	thickness	Diameter	With Al.	With Cu
area(Sqmm)) mm	mm	mm	mm	(mm)	Cond.	Cond.	wire (mm)	mm	(mm)	Cond.	Cond.
25	2.8	0.4	0.8	1.56	37	1800	2250	2.00	1.72	40	2500	2950
35	2.8	0.4	0.8	1.72	39	2000	2650	2.00	1.72	42	2800	3450
50	2.8	0.5	0.8	1.72	42	2300	3250	2.00	1.88	45	3200	4150
70	2.8	0.5	0.8	1.88	46	2800	4100	2.00	1.88	49	3700	5000
95	2.8	0.5	0.8	1.88	50	3300	5050	2.50	2.04	54	4700	6450
120	2.8	0.6	0.8	2.04	54	3800	6050	2.50	2.20	58	5400	7650
150	2.8	0.6	0.8	2.20	58	4300	7100	2.50	2.20	61	5900	8700
185	2.8	0.6	0.8	2.20	61	4800	8250	2.50	2.36	65	6600	10050
240	2.8	0.7	0.8	2.36	67	5900	10350	3.15	2.52	72	8400	12850
300	3.0	0.7	0.8	2.52	72	6800	12400	3.15	2.68	77	9700	15300
400	3.3	0.7	0.8	2.84	82	8500	15950	4.00	3.00	88	13000	20450

CROSS-SECTIONAL VIEW

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	App. Capecitance		Nor	mal* Cui	rent Ratin	g in Amp	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	Sec.duration
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.126	0.21	95	82	105	120	105	135	2.35	3.58
35	0.868	0.524	1.11	0.671	0.120	0.24	115	97	125	145	125	165	3.29	5.00
50	0.641	0.387	0.820	0.495	0.114	0.27	130	115	150	170	150	195	4.70	7.15
70	0.443	0.268	0.567	0.343	0.107	0.31	160	140	190	210	180	240	6.58	10.00
95	0.320	0.193	0.410	0.248	0.102	0.36	190	165	230	250	215	295	8.93	13.59
120	0.253	0.153	0.325	0.197	0.098	0.39	220	190	260	280	240	335	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.095	0.43	245	210	295	310	270	380	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.093	0.47	275	240	335	350	305	430	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.090	0.53	315	275	395	400	350	500	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.090	0.54	355	310	450	445	390	570	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.087	0.57	400	350	520	500	440	650	37.60	57.20

[~] Tabulated approx, net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

■ABLE - 27

TECHNICAL DETAIL FOR DICABS 6.6/6.6 KV & 6.35/11 KV SINGLE CORES, AL/COPPER COND., XLPE INSULATED. ARMOURED CABLES

Cable Code: A2XWaY/2XWaY, (6.6KV-UNEARTHED OR 11KV EARTHED GRADE)

Ref Specification: IS: 7098PART-2

PHYSICAL PARAMETERS

SIZE cross-Sectional	Nominal Insulation	Minimum Inner Sheath	Nominal Diameter of Armour Wire	Minimum Thickness of Outer Sheath	Approx. Over all	Appro	
area (Sqmm)	thicknes mm	thickness mm	(mm)	(mm)	Diameter (mm)	With Al. Cond.	With Cu Cond
25	2.8	0.3	1.60	1.40	24	650	800
35	2.8	0.3	1.60	1,40	25	700	900
50	2.8	0.3	1.60	1.40	26	800	1100
70	2.8	0.3	1.60	1.40	28	900	1300
95	2.8	0.3	1.60	1.40	30	1050	1650
120	2.8	0.3	1.60	1.40	32	1200	1950
150	2.8	0.3	1.60	1.56	33	1300	2200
185	2.8	0.3	2.00	1.56	36	1600	2750
240	2.8	0.4	2.00	1.56	39	1850	3350
300	3.0	0.4	2.00	1.56	41	2050	3900
400	3.3	0.4	2.00	1.72	44	2500	5000
500	3.5	0.5	2.00	1.72	47	2900	6000
630	3.5	0.5	2.00	1.88	51	3450	7350
800	3.5	0.5	2.50	2.04	57	4300	9250
1000	3.6	0.5	2.50	2.20	61	5100	11300

CROSS-SECTIONAL VIEW

OUTER SHEATH: PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH : BLACK. OPTIONS : ANY OTHER COLOURS AS PER REQUIREMENT ~ Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL DARAMETERS

ELECTRICA						-								
SIZE cross-sectional	Resista	ind. D.C. ance at	Resis	Cond. A.C. tance at	Reactance of cable at 50HZ	Capecitance of cable	With A	Nor Iuminiur		rent Rating	g in Am Copper		Short Circ Rating for 1	Sec.duratio
area (sq MM)	20°C in			Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.164	0.18	100	90	120	130	115	155	2.35	3.58
35	0.868	0.524	1.11	0.671	0.156	0.20	120	105	145	155	140	185	3.29	5.00
50	0.641	0.387	0.820	0.495	0.147	0.22	140	125	170	185	160	220	4.70	7.15
70	0.443	0.268	0.567	0.343	0.139	0.26	175	155	215	225	195	275	6.58	10.00
95	0.320	0.193	0.410	0.248	0.133	0.29	205	180	260	265	235	340	8.93	13.59
120	0.253	0.153	0.325	0.197	0.127	0.32	235	205	305	300	265	390	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.124	0.35	260	230	345	335	295	440	14.10	21.45
185	0.164	0.0991	0.211	0.12	0.120	0.38	295	260	395	380	330	510	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.117	0.43	340	300	470	435	380	600	22.56	34.32
300	0.100	0.0601	0.130	0.07B	0.113	0.46	385	335	540	490	425	680	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.110	0.53	440	380	630	550	480	790	37.60	57.20
500	0.0605	0.0366	0.0808	0.0 89	0.107	0.59	495	430	730	610	530	910	47.00	71.50
630	0.0469	0.0283	0.0648	0.0891	0.104	0.66	560	480	840	680	580	1030	59.22	90.10
800	0.0367	0.0221	0.0530	0.0819	0.100	0.74	620	530	960	740	630	1140	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.098	0.82	680	580	1070	790	670	1250	94.00	143.00

TABLE - 28

TECHNICAL DETAIL FOR DICABS 6.6/6.6 KV & 6.35/11 KV THREE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY,2XWY (6.6KV UE / 11KVE))

Ref Specification: IS: 7098PART-2

				FLAT STI	RIP ARMOU	IRED				ROUND	WIRES ARMOUR	ED
SIZE cross-	Nominal Insulation	Minimum Inner Sheath	Nominal Armour strip	Minimum outer Sheath	Approx. Over all		rox. (kg/km)	Nominal diameter	Minimum outer Sheath	Approx. Over all		rox. : (kg/km)
	thickness	thickness	thickness	thickness	Diameter	With AJ.	With Cu	of armour	thickness	Diameter	With AJ.	With Cu
area(Sqmm)	mm	mm	mm	mm	(mm)	Cond.	Cond.	wire (mm)	mm	(mm)	Cond.	Cond.
25	3.6	0.4	0.8	1.72	41	2100	2550	2.00	1.72	43	2800	3250
35	3.6	0.5	0.8	1.72	43	2350	2950	2.00	1.88	46	3200	3850
50	3.6	0.5	0.8	1.88	46	2700	3650	2.50	2.04	50	4000	4950
70	3.6	0.5	0.8	1.88	50	3100	4400	2.50	2.04	54	4500	5800
95	3.6	0.6	0.8	2.04	54	3700	5450	2.50	2.20	58	5200	6950
120	3.6	0.6	0.8	2.20	58	4200	6450	2.50	2.20	62	5800	8050
150	3.6	0.6	0.8	2.20	61	4700	7500	2.50	2.36	65	6400	9200
185	3.6	0.7	0.8	2.36	65	5300	8750	3.15	2.52	70	7900	11350
240	3.6	0.7	0.8	2.52	71	6300	10750	3.15	2.68	76	9000	13500
300	3.6	0.7	0.8	2.68	75	7200	12800	3.15	2.84	80	10000	15600
400	3.6	0.7	0.8	2.84	83	8700	16150	4.00	3.00	90	13500	20500

CROSS-SECTIONAL VIEW

DUVINOU DADAMETERO

COLOUR OF OUTER SHEATH : BLACK, OPTIONS : ANY OTHER COLOURS AS PER REQUIREMENT

~ Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL DADAMETERS

ELECTRICA	L PAR	AME	ERS											
SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	App. Capecitance		Nor	mal* Cui	rent Rating	in Am	os	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1 5	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)					********	0.00	Al	Cu
25	1.20	0.727	1.54	0.931	0.133	0.18	95	82	105	120	105	135	2.35	3.58
35	0.868	0.524	1.11	0.671	0.126	0.20	115	97	125	145	125	165	3.29	5.00
50	0.641	0.387	0.820	0.495	0.118	0.22	130	115	150	170	150	195	4.70	7.15
70	0.443	0.268	0.567	0.343	0.116	0.26	160	140	190	210	180	240	6.58	10.00
95	0.320	0.193	0.410	0.248	0.107	0.29	190	165	230	250	215	295	8.93	13.59
120	0.253	0.153	0.325	0.197	0.102	0.32	220	190	260	280	240	335	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.099	0.35	245	210	295	310	270	380	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.097	0.38	275	240	335	350	305	430	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.084	0.43	315	275	395	400	350	500	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.093	0.46	355	310	450	445	390	570	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.089	0.53	400	350	520	500	440	650	37.60	57.20

TABLE . 29

TECHNICAL DETAIL FOR DICABS 11/11 KV SINGLE CORES, AL/COPPER COND.. XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XWaY/2XWaY. (11KV - UN-EARTHED GRADE)

Ref Specification: IS: 7098PART-2

SIZE cross-Sectional	Nominal Insulation	Minimum Inner Sheath	Nominal Diameter of Armour Wire	Minimum Thickness of Outer Sheath	Approx. Over all	Appro	
area (Sqmm)	thicknes mm	thickness mm	(mm)	(mm)	Diameter (mm)	With Al. Cond.	With Cu Cond
25	5.5	0.3	1.60	1.40	28	900	1050
35	5.5	0.3	1.60	1.40	29	950	1150
50	5.5	0.3	1.60	1.56	31	1100	1400
70	5.5	0.3	1.60	1.56	33	1200	1650
95	5.5	0.3	1.60	1.56	34	1400	2000
120	5.5	0.4	2.00	1.56	37	1600	2350
150	5.5	0.4	2.00	1.56	38	1700	2600
185	5.5	0.4	2.00	1.56	40	1900	3050
240	5.5	0.4	2.00	1.72	43	2200	3700
300	5.5	0.4	2.00	1.72	44	2500	4350
400	5.5	0.5	2.00	1.88	48	2900	5400
500	5.5	0.5	2.50	1.88	53	3500	6600
630	5.5	0.5	2.50	2.04	56	4100	8000
800	5.5	0.6	2.50	2.20	61	4900	9900
1000	5.5	0.6	2.50	2.20	65	5700	11900

CROSS-SECTIONAL VIEW

CONDUCTOR: INSULATION SCREENING: Stranded Compacted Circular Extruded semiconducting compound followed by Aluminium/copper as per Class-2 of IS:8130 helically wrapped 0.050 thick copper tape. Conductor screening : ARMOURING: Single layer of Aluminium Extruded Semiconducting Compound Round wires. INSULATION MATERIAL: INNER SHEATH: CROSSLINKED POLYETHYLENE (XLPE) Extruded PVC

> OUTER SHEATH: PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT - Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	Capecitance		Nor	mal* Cur	rent Rating	g in Am	os	Short Circ	uit Current
cross-sectional		ance at	Resist	tance at	cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.164	0.14	100	90	120	130	115	155	2.35	3.58
35	0.868	0.524	1.11	0.671	0.156	0.16	120	105	145	155	140	185	3.29	5.00
50	0.641	0.387	0.820	0.495	0.147	0.17	140	125	170	185	160	220	4.70	7.15
70	0.443	0.268	0.567	0.343	0.139	0.20	175	155	215	225	195	275	6.58	10.00
95	0.320	0.193	0.410	0.248	0.133	0.21	205	180	260	265	235	340	8.93	13.59
120	0.253	0.153	0.325	0.197	0.127	0.23	235	205	305	300	265	390	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.124	0.25	260	230	345	335	295	440	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.120	0.26	295	260	395	380	330	510	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.116	0.29	340	300	470	435	380	600	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.112	0.32	385	335	540	490	425	680	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.109	0.35	440	380	630	550	480	790	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.105	0.39	495	430	730	610	530	910	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.102	0.43	560	480	840	680	580	1030	59.22	90.10
800	0.0367	0.0221	0.0530	0.0319	0.097	0.50	620	530	960	740	630	1140	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.096	0.56	680	580	1070	790	670	1250	94.00	143.00

TABLE - 30

TECHNICAL DETAIL FOR DICABS 11/11 KV THREE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY/2XWY (11KVUE))

0.8 3.00 93 10000 17500 4.00 3.00 98

Ref Specification: IS: 7098PART-2

15000

22450

PHYSIC	AL PA	RAMETE	RS									
				FLAT STI	RIP ARMOU	IRED				ROUND	WIRES ARMOUR	ED
SIZE cross-	Nominal Insulation	Minimum Inner Sheath	Nominal Armour strip	Minimum outer Sheath	Approx. Over all		orox. t (ka/km)	Nominal diameter	Minimum outer Sheath	Approx. Over all		orox. t (kg/km)
sectional	thickness	thickness	thickness	thickness	Diameter	With Al.	With Cu	of armour	thickness	Diameter	With Al.	With Cu
rea(Sqmm)	mm	mm	mm	mm	(mm)	Cond.	Cond.	wire (mm)	mm	(mm)	Cond.	Cond.
25	5.5	0.5	0.8	1.88	50	3000	3500	2.50	2.04	54	4300	4750
35	5.5	0.5	0.8	2.04	53	3200	3850	2.50	2.20	57	4700	5350
50	5.5	0.6	0.8	2.20	56	3700	4600	2.50	2.20	60	5100	6050
70	5.5	0.6	0.8	2.20	60	4100	5400	2.50	2.36	64	5800	7100
95	2.5	0.6	0.8	2.36	64	4800	6567	3.15	2.52	69	7300	9100
120	5.5	0.7	0.8	2.52	68	5400	7632	3.15	2.52	73	8000	10250
150	5.5	0.7	0.8	2.52	71	5900	8690	3.15	2.68	76	8600	11400
185	5.5	0.7	0.8	2.68	75	6500	9950	3.15	2.84	80	9400	12850
240	5.5	0.7	0.8	2.84	81	7600	12050	3.15	3.00	85	11000	15500
300	5.5	0.7	0.8	3.00	85	8600	14200	4.00	3.00	91	13000	18600

5.5 CROSS-SECTIONAL VIEW

400

PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT

- Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL PARAMETERS

SIZE	Max. Co	ond. D.C.	Approx.	Cond. A.C.	Reactance of	App. Capecitance		Nor	mal* Cur	rent Rating	g in Amp	OS	Short Circ	uit Current
cross-sectional	Resist	ance at	Resis	tance at	cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)					***********		Al	Cu
25	1.20	0.727	1.54	0.931	0.145	0.14	95	82	105	120	105	135	2.35	3.58
35	0.868	0.524	1.11	0.671	0.138	0.16	115	97	125	145	125	165	3.29	5.00
50	0.641	0.387	0.820	0.495	0.129	0.17	130	115	150	170	150	195	4.70	7.15
70	0.443	0.268	0.567	0.343	0.124	0.20	160	140	190	210	180	240	6.58	10.00
95	0.320	0.193	0.410	0.248	0.116	0.21	190	165	230	250	215	295	8.93	13.59
120	0.253	0.153	0.325	0.197	0.112	0.23	220	190	260	280	240	335	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.108	0.25	245	210	295	310	270	380	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.105	0.26	275	240	335	350	305	430	17.39	26.45
240	0.125	0.0754	0.162	0.0976	0.102	0.29	315	275	395	400	350	500	22.56	34.32
300	0.100	0.0601	0.130	0.0778	0.0999	0.32	355	310	450	445	390	570	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.0954	0.35	400	350	520	500	440	650	37.60	57.20

TECHNICAL DETAIL FOR DICABS 12.7/22 KV SINGLE CORES, AL/COPPER COND., XLPE INSULATED. ARMOURED CABLES

Cable Code: A2XWaY/2XWaY, (22KV - EARTHED GRADE)

Ref Specification: IS: 7098PART-2

PHYSICAL PARAMETERS

SIZE cross-Sectional	Nominal Insulation	Minimum Inner Sheath	Nominal Diameter of Armour Wire	Minimum Thickness of Outer Sheath	Approx. Over all	Appr cable wt	
area (Sqmm)	thicknes	thickness	(mm)	(mm)	Diameter	With Al. Cond.	With Cu., Cond.
	mm	mm			(mm)		
25	6.0	0.3	1.60	1.40	29	950	100
35	6.0	0.3	1.60	1.40	31	1050	1250
50	6.0	0.3	1.60	1.56	32	1150	1500
70	6.0	0.3	1.60	1.56	34	1300	1750
95	6.0	0.3	1.60	1.56	36	1600	2200
120	6.0	0.4	2.00	1.56	38	1700	2450
150	6.0	0.4	2.00	1.56	39	1800	2750
185	6.0	0.4	2.00	1.56	41	2000	3150
240	6.0	0.4	2.00	1.72	44	2300	3800
300	6.0	0.4	2.00	1.72	46	2600	4500
400	6.0	0.5	2.00	1.88	50	3000	5500
500	6.0	0.5	2.50	1.88	53	3600	6700
630	6.0	0.5	2.50	2.04	57	4300	8200
800	6.0	0.6	2.50	2.20	62	5000	9950
1000	6.0	0.6	2.50	2.26	66	5800	12000

CROSS-SECTIONAL VIEW

OUTER SHEATH:
PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT — Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	Capecitance		Non	mal* Cur	rent Ratin	g in Amp	os	Short Circ	uit Current
cross-sectional		ance at	Resis	tance at	cable at 50HZ	of cable	With A	luminiun	n cond.	With	Copper	cond.	Rating for 1	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.166	0.13	100	90	120	130	115	155	2.35	3.58
35	0.868	0.524	1.11	0.671	0.158	0.15	120	105	145	155	135	185	3.29	5.00
50	0.641	0.387	0.820	0.495	0.149	0.16	140	120	175	180	155	225	4.70	7.15
70	0.443	0.268	0.567	0.343	0.140	0.18	170	150	220	215	190	280	6.58	10.00
95	0.320	0.193	0.410	0.248	0.134	0.20	200	175	265	255	220	335	8.93	13.59
120	0.253	0.153	0.325	0.197	0.130	0.22	225	195	300	285	245	380	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.126	0.23	250	215	340	310	270	430	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.122	0.25	280	240	385	345	300	485	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.118	0.27	315	275	450	390	335	560	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.113	0.30	345	300	500	420	360	620	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.110	0.32	385	330	570	455	395	690	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.107	0.36	415	360	640	480	415	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.103	0.40	450	385	720	510	440	820	59.22	90.10
800	0.0367	0.0221	0.0530	0.0319	0.0997	0.46	485	415	790	540	460	840	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.097	0.52	510	435	850	550	475	940	94.00	143.00

TABLE - 32

TECHNICAL DETAIL FOR DICABS 12.7/22 KV THREE CORES, AL/COPPER COND., XLPE INSULATED, ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY/2XWY (22KV-E)

Ref Specification: IS: 7098PART-2

				FLAT STI	RIP ARMOU	JRED				ROUND	WIRES ARMOUR	ED
SIZE cross-	Nominal Insulation	Minimum Inner Sheath	Nominal Armour strip	Minimum outer Sheath	Approx. Over all		rox. (kg/km)	Nominal diameter	Minimum outer Sheath	Approx. Over all		rox. (kg/km)
sectional area(Sqmm)	thickness mm	thickness mm	thickness mm	thickness mm	Diameter (mm)	With AJ. Cond.	With Cu Cond.	of armour wire (mm)	thickness mm	Diameter (mm)	With Al. Cond.	With Cu Cond.
25	6.0	0.5	0.8	2.04	53	3200	3650	2.50	2.20	56	4600	5050
35	6.0	0.6	0.8	2.04	56	3500	4150	2.50	2.20	59	5000	5650
50	6.0	0.6	0.8	2.20	59	3900	4850	2.50	2.36	61	5400	6350
70	6.0	0.6	0.8	2.20	63	4400	5700	2.50	2.36	65	6100	7400
95	6.0	0.7	0.8	2.36	67	5000	6800	3.15	2.52	72	7600	9350
120	6.0	0.7	0.8	2.52	70	5700	7950	3.15	2.52	75	8300	10550
150	6.0	0.7	0.8	2.52	74	6200	9000	3.15	2.68	78	9000	11800
185	6.0	0.7	0.8	2.68	77	6800	10250	3.15	2.84	83	9800	13250
240	6.0	0.7	0.8	2.84	83	7900	12350	3.00	3.00	90	12500	16950
300	6.0	0.7	0.8	3.00	88	8900	14500	4.00	3.00	93	13500	19100
400	6.0	0.7	0.8	3.00	95	10500	17950	4.00	3.00	102	15500	22950

CROSS-SECTIONAL VIEW

OUTER SHEATH:
PVC TYPE ST-2 OF IS: 5831 '--- OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK. OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT

~ Tabulated approx. net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	Capecitance		Nor	mal* Cu	rrent Rating	in Amp	os	Short Circ	uit Current
cross-sectional	Resista	ance at	Resist	tance at	cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1:	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Duct	Air	in K.	Amps
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.148	0.13	90	85	110	120	100	135	2.35	3.58
35	0.868	0.524	1.11	0.671	0.141	0.15	110	100	130	145	120	165	3.29	5.00
50	0.641	0.387	0.820	0.495	0.132	0.16	130	115	155	170	150	200	4.70	7.15
70	0.443	0.268	0.567	0.343	0.125	0.18	160	140	190	205	180	245	6.58	10.00
95	0.320	0.193	0.410	0.248	0.119	0.20	190	170	230	245	215	300	8.93	13.59
120	0.253	0.153	0.325	0.197	0.114	0.22	215	190	265	275	245	340	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.111	0.23	240	215	300	305	275	385	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.107	0.25	270	240	340	345	305	435	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.104	0.27	310	275	400	395	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.102	0.30	350	310	455	440	390	580	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.097	0.32	395	355	530	495	440	660	37.60	57.20

TECHNICAL DETAIL FOR DICABS 19/33 KV SINGLE CORES, AL/COPPER COND., XLPE INSULATED. ARMOURED CABLES

Cable Code: A2XWaY/2XWaY, (33KV - EARTHED GRADE)

Ref Specification: IS: 7098PART-2

PHYSICAL PAR	RAMETERS	3					
SIZE cross-Sectional	Nominal Insulation	Minimum Inner Sheath	Nominal Diameter of Armour Wire	Minimum Thickness of Outer Sheath	Approx. Over all	Appr cable wt	
area (Sqmm)	thicknes mm	thickness mm	(mm)	(mm)	Diameter (mm)	With Al. Cond.	With Cu., Cond
25	8.80	0.40	2.00	1.56	36	1400	1450
35	8.80	0.40	2.00	1.56	38	1500	1600
50	8.80	0.40	2.00	1.56	39	1600	1800
70	8.80	0.40	2.00	1.56	40	1800	2100
95	8.80	0.40	2.00	1.72	43	2000	2500
120	8.80	0.40	2.00	1.72	44	2100	2700
150	8.80	0.40	2.00	1.72	46	2300	3130
185	8.80	0.50	2.00	1.72	47	2500	3550
240	8.80	0.50	2.00	1.88	50	2800	4200
300	8.80	0.50	2.50	2.04	53	3300	5050
400	8.80	0.50	2.50	2.04	57	3800	6200
500	8.80	0.60	2.50	2.20	60	4300	7300
630	8.80	0.60	2.50	2.20	64	4900	8800
800	8.80	0.60	3.15	2.36	70	6000	10500
1000	8.80	0.70	3.15	2.52	74	6900	13000

CROSS-SECTIONAL VIEW

CONDUCTOR:
Stranded Compacted Circular
Aluminium (copper as per Class-2 of IS:8130

Conductor screening:
Extraded Semiconducting compound followed by helically wrapped 0.050 thick copper tape.

ARMOURING: Single layer of Aluminium (Round Wires.)

INSULATION MATERIAL:
CROSSLINKED POLYETHYLENE (XLPE)

Extraded PVC

OUTER SHEATH:
PVC TYPE ST-2 OF IS: 5831 '---OPTIONS: PVC TYPE ST-2/FR TYPE/FRLS TYPE

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT — Tabulated approx, net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

ELECTRICAL PARAMETERS

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	Capecitance		Nor	mal* Cu	rent Rating	g in Amp	os	Short Circ	uit Current
cross-sectional	Resista	ance at		tance at	cable at 50HZ	of cable	With A	luminiur	n cond.	With	Copper	cond.	Rating for 1 Sec.duration	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground	Ground Duct Air		in K. Amps	
	Al	Cu	Al	Cu	(Approx.)	(Approx.)							Al	Cu
25	1.20	0.727	1.54	0.931	0.175	0.10	100	90	120	130	115	155	2.35	3.58
35	0.868	0.524	1.11	0.671	0.169	0.11	120	105	145	155	135	185	3.29	5.00
50	0.641	0.387	0.820	0.495	0.161	0.12	140	120	175	180	155	225	4.70	7.15
70	0.443	0.268	0.567	0.343	0.152	0.14	170	150	220	215	190	280	6.58	10.00
95	0.320	0.193	0.410	0.248	0.145	0.15	200	175	265	255	220	335	8.93	13.59
120	0.253	0.153	0.325	0.197	0.140	0.16	225	195	300	285	245	380	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.135	0.18	250	215	340	310	270	430	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.130	0.19	280	240	385	345	300	485	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.126	0.21	315	275	450	390	335	560	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.122	0.23	345	300	500	420	360	620	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.117	0.25	385	330	570	455	395	690	37.60	57.20
500	0.0605	0.0366	0.0808	0.0489	0.113	0.27	415	360	640	480	415	750	47.00	71.50
630	0.0469	0.0283	0.0648	0.0391	0.111	0.29	450	385	720	510	440	820	59.22	90.10
800	0.0367	0.0221	0.0530	0.0319	0.105	0.34	485	415	790	540	460	840	75.20	114.40
1000	0.0291	0.0176	0.0444	0.0268	0.102	0.37	510	435	850	550	475	940	94.00	143.00

TECHNICAL DETAIL FOR DICABS 19/33 KV THREE CORES, AL/COPPER COND., XLPE INSULATED. ARMOURED CABLES

Cable Code: A2XFY/2XFY, A2XWY/2XWY (33KV-E)

Ref Specification: IS: 7098PART-2

PHYSIC	CAL PA	RAMETE	RS									
				FLAT STE	RIP ARMOL	IRED				ROUND	WIRES ARMOURI	ED
SIZE	Nominal	Minimum	Nominal	Minimum	Approx.	App	rox.	Nominal	Minimum	Approx.	App	
cross-		Inner Sheath		outer Sheath	Over all	cable wt	(kg/km)	diameter	outer Sheath		cable wt	(kg/km)
	thickness	thickness	thickness	thickness	Diameter	With Al.	With Cu	of armour	thickness	Diameter	With Al.	With Cu
area(Sqmm)	mm	mm	mm	mm	(mm)	Cond.	Cond.	wire (mm)	mm	(mm)	Cond.	Cond.
25	8.80	0.70	0.8	2.36	67	4700	5150	3.15	2.68	72	7400	7850
35	8.80	0.70	0.8	2.52	70	5100	5750	3.15	2.68	75	7800	8450
50	8.80	0.70	0.8	2.52	72	5500	6450	3.15	2.68	77	8200	9150
70	8.80	0.70	0.8	2.68	76	6100	7400	3.15	2.84	81	9000	10300
95	8.80	0.70	0.8	2.84	80	6800	8550	3.15	3.00	86	10000	11750
120	8.80	0.70	0.8	2.84	84	7500	9750	4.00	3.00	90	12000	14250
150	8.80	0.70	0.8	3.00	87	8100	10900	4.00	3.00	94	12700	15500
185	8.80	0.70	0.8	3.00	90	8800	12250	4.00	3.00	97	13500	16950
240	8.80	0.70	0.8	3.00	95	9900	14350	4.00	3.00	103	15000	19450
300	8.80	0.70	0.8	3.00	100	11000	16600	4.00	3.00	106	16000	21600
400	8.80	0.70	0.8	3.00	108	12500	19950	4.00	3.00	114	18000	25450

CROSS-SECTIONAL VIEW

COLOUR OF OUTER SHEATH: BLACK, OPTIONS: ANY OTHER COLOURS AS PER REQUIREMENT

~ Tabulated approx, net weights of cables are only for guidelines for transportation / Loading / Unloading Purpose.

SIZE	Max. Co	nd. D.C.	Approx.	Cond. A.C.	Reactance of	Capecitance		Nor	mal* Cu	rrent Rating	g in Amp	os	Short Circ	uit Current
cross-sectional	Resista	ance at	Resist	tance at	cable at 50HZ	of cable	With A	Juminiur	n cond.	With Copper cond.			Rating for 1 Sec.duration	
area (sq MM)	20°C in	Ohm/km	90°C in	Ohm/km	in ohms/km	in micro F/KM	Ground	Duct	Air	Ground Duct Air		Air	in K. Amps	
	Al	Cu	Al	Cu	(Approx.)	(Approx.)						3	Al	Cu
25	1.20	0.727	1.54	0.931	0.160	0.10	90	85	110	120	100	135	2.35	3.58
35	0.868	0.524	1.11	0.671	0.153	0.11	110	100	130	145	120	165	3.29	5.00
50	0.641	0.387	0.820	0.495	0.146	0.12	130	115	155	170	150	200	4.70	7.15
70	0.443	0.268	0.567	0.343	0.138	0.14	160	140	190	205	180	245	6.58	10.00
95	0.320	0.193	0.410	0.248	0.130	0.15	190	170	230	245	215	300	8.93	13.59
120	0.253	0.153	0.325	0.197	0.125	0.16	215	190	265	275	245	340	11.28	17.16
150	0.206	0.1240	0.265	0.159	0.122	0.18	240	215	300	305	275	385	14.10	21.45
185	0.164	0.0991	0.211	0.127	0.118	0.19	270	240	340	345	305	435	17.39	26.45
240	0.125	0.0754	0.162	0.098	0.113	0.21	310	275	400	395	350	510	22.56	34.32
300	0.100	0.0601	0.130	0.078	0.111	0.23	350	310	455	440	390	580	28.20	42.90
400	0.0778	0.0470	0.1023	0.0618	0.106	0.25	395	355	530	495	440	660	37.60	57.20

BASIC ASSUMPTION FOR CURRENT RATINGS & RATING FACTORS

SCOPE

The current rating of cables as indicated in various tables have been calculated on certain assumed conditions

In actual practice these conditions may be different. Therefore to determine the actual current ratings as per installation conditions, the tabulated ratings shall be multiplied with appropriate factors

BASIC ASSUMPTION FOR CURRENT RATINGS

- í) Maximum permissible temperature-90°C for XLPE insulation, 70°C for general purpose PVC, 85C for HR PVC
- Ground/Duct temperature 30°C ii)
- iii) Ambient temperature 40°C
- iv) Thermal resistivity of soil 150°C cm/W
- v) Thermal resistivity of Dielectric 650°C cm/W for PVC, 350°C cm/W for XLPE
- vi) Depth of laying for 1.1kv cables 750 mm, 3.3 KV to 11KV-900MM, Above 11KV-1050mm
- vii) Single core cables installed in one circuit in following arrangement

OR

b) RATING FACTORS

VIII) Multicore cables installed in single circuit Rating factors related to variation in ambient air temperature

Air temperatu	re in Deg. C	20	25	30	35	40	45	50	55
	Normal PVC	1.32	1.25	1.16	1.09	1.00	0.90	0.80	0.80
Rating factors	HRPVC	1.22	1.17	1.12	1.06	1.00	0.94	0.87	0.80
	XLPE	1.20	1.16	1.11	1.06	1.00	0.95	0.88	0.81

Rating factors related to variation in ground temperature

Air temperatu	re in Deg. C	15	20	25	30	35	40	45	50
	Normal PVC	1.17	1.12	1.06	1.00	0.94	0.	0.79	0.71
Rating factors	HRPVC	1.13	1.09	1.04	1.00	0.95	0.90	0.85	0.80
	XLPE	1.12	1.08	1.04	1.00	0.96	0.91	0.87	0.82

Rating factors related to variation in ground thermal resistivity of soil for 3 single core cables laid direct in ground. (Average value)

Thermal Res.	in °C.Cm/W	100	120	150	200	250	300	
Rating factors		1.20	1.10	1.00	0.90	0.81	0.74	

Rating factors related to variation in ground thermal resistivity of soil for multi core cables laid direct in ground. (Average value)

	Thermal Res.	in °C.Cm/W	100	120	150	200	250	300
F	lating factors		1.16	1.08	1.00	0.90	0.82	0.76

V) Rating factors related to variation in depth of laying for 1.1kv cables.

For cross-sectional area of conductor <25sqmm

Depth of laying (cm) >	75	90	105	120	150	180 & ABOVE
Rating factors	1.00	0.99	0.98	0.97	0.96	0.95

For cross-sectional area of conductor 25 to 300 sqmm

Depth of laying (cm) >	75	90	105	120	150	180 & ABOVE
Rating factors	1.00	0.98	0.97	0.96	0.94	0.93

For cross-sectional area of conductor above 300sgmm

Depth of laying (cm) >	75	90	105	120	150	180 & ABOVE
Rating factors	1.00	0.97	0.96	0.95	0.92	0.91

Rating factors related to variation in depth of laying for 3.3kv to 11kv cables

Depth of laying (cm) >	75	90	105	120	150	180 & ABOVE
Rating factors		1.00	0.99	0.98	0.96	0.95

Rating factors related to variation in depth of laving for above 11kv cables

Til) Tidanig idoloro roldica to Tai	anon in aoptin or	aying ior above	Time outlied			
Depth of laying (cm) >	75	90	105	120	150	180 & ABOVE
Rating factors			1.00	0.99	0.98	0.96

BASIC ASSUMPTION FOR CURRENT RATINGS & RATING FACTORS

GROUP RATING FACTORS

Cable laid direct in Ground

No of cables/ circuits in groups	Mu	ticore cable	es in horizor	ital formation	n		Single cable	s in horizor	ntal formatio	n
	Touching	S=15CM	S=30CM	S=45CM	S=60CM	Touching	S=15CM	S=30CM	S=45CM	S=60CM
2	0.8	0.84	0.87	0.90	0.91	0.80	0.85	0.90	0.92	0.95
3	0.68	0.74	0.79	0.83	0.86	0.70	0.78	0.85	0.88	0.91
4	0.62	0.69	0.75	0.80	0.83	0.64	0.73	0.81	0.86	0.89
5	0.58	0.65	0.72	0.77	0.80	0.59	0.70	0.79	0.84	0.88
6	0.55	0.62	0.69	0.75	0.78	0.55	0.67	0.77	0.83	0.87
7	0.52	0.59	0.67	0.73	0.77	0.53	0.65	0.76	0.82	0.86
8	0.5	0.57	0.66	0.72	0.75	0.51	0.64	0.76	0.82	0.86
9	0.45	0.55	0.65	0.71	0.75	0.49	0.63	0.74	0.81	0.85
10	0.46	0.54	0.64	0.70	0.74	0.48	0.63	0.74	0.81	0.85
11	0.45	0.53	0.63	0.70	0.74	0.47	0.62	0.73	0.80	0.84
12	0.44	0.52	0.62	0.69	0.73	0.46	0.61	0.73	0.80	0.84

S=axial spacing of cable

No of cables/ circuits in groups	No of Tier	Multicore cables in Tier formation								
		Touching	S=15CM	S=30CM	S=45CM	S=60CM				
2	1	0.80	0.84	0.87	0.90	0.91				
3	1	0.68	0.74	0.79	0.83	0.86				
4	2	0.6	0.66	0.73	0.77	0.79				
5	2	0.55	0.61	0.68	0.71	0.73				
6	2	0.51	0.57	0.63	0.67	0.69				
7	3	0.48	0.54	0.59	0.63	0.64				
8	3	0.46	0.51	0.56	0.6	0.61				
9	3	0.44	0.48	0.53	0.57	0.58				
10	4	0.42	0.47	0.52	0.55	0.56				
11	4	0.41	0.46	0.50	0.54	0.55				
12	4	0.4	0.45	0.49	0.53	0.54				

1. Cable laid direct in open racks in air

MULTICORE CABLES IN OPEN RACKS IN AIR

	25mm	→ S ←				25mm				
No. of racks	WALL	0 0	↓ IOMM ↑	S=di	a of cable	WALL	0 0	MM S		t=touching
		No	. of cables p	er rack			N	o. of cables	per rack	
	1	2	3	6	9	1	2	3	6	9
1	1.00	0.98	0.96	0.93	0.92	1.00	0.84	0.80	0.75	0.73
2	1.00	0.95	0.93	0.90	0.89	1.00	0.80	0.76	0.71	0.69
3	1.00	0.94	0.92	0.89	0.88	1.00	0.78	0.74	0.70	0.68
6	1.00	0.93	0.90	0.87	0.86	1.00	0.76	0.72	0.65	0.66

SINGLE CORE CABLES IN OPEN BACKS IN AIR

SINGLE CO	DRE CABLES	S IN OPEN	RACKS IN AI
	ARRANG 25MM	SEMENT	
	WALL & 6	32d Q 1 300mm	
No. of Racks	No. of Circuit F	tacks (3 single of	cores) per rack
	1	2	6
1	1.00	0.98	0.96
2	1.00	0.95	0.93
3	1.00	0.94	0.92
4	1.00	0.93	0.90

S=axia	spacing	of	cable	è

No. of cables/ circuits in groups	No. of Tier	Multi	core cables in	Tier formation			
		Touching	S=15CM	S=305CM	S=45CM	S=60CM	
2	1	0.80	0.84	0.87	0.90	0.91	
3	1	0.68	0.74	0.79	0.83	0.86	
4	2	0.60	0.66	0.73	0.77	0.79	
5	2	0.55	0.61	0.68	0.71	0.73	
6	2	0.51	0.57	0.63	0.67	0.69	
7	3	0.48	0.54	0.59	0.63	0.64	
8	3	0.46	0.51	0.56	0.60	0.61	
9	3	0.44	0.48	0.53	0.57	0.58	
10	4	0.42	0.47	0.52	0.55	0.56	
11	4	0.41	0.46	0.50	0.54	0.55	
12	4	0.40	0.45	0.49	0.53	0.54	
No. of cables/ circuits in groups		icore cable (Tou o. of cables in ra		eequa	e cable (spac al to dia meter	of cable	S/core cables in trefoil touching formation spacing between circuits equal to twice the diameter of cable) No of cables in racks

circuits in groups			es in racks	69	qual to dia No of cab	meter of	cable	spacing between circuits equ the diameter of cable) No of ca			o twice	
	1		3	4	1	2	3	4	1	2	3	4
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	0.84	0.80	0.78	0.76	0.98	0.95	0.94	0.93	0.98	0.95	0.94	0.93
3	0.80	0.76	0.74	0.72	0.96	0.93	0.92	0.90	0.96	0.93	0.92	0.90
	0.76	0.71	0.70	0.00	0.02	0.00	0.00	0.07				

Estimated Voltage Drops in PVC/XLPE Aluminium Cables For A.C. System

	(Vol	ltage drop -	Volts/Km/A	Amps)	1
Nominal area of	P.V.C	. Cables	XLPI	Cables	
conductor (sq.mm)	Single Phase	Three Phase	Single Phase	Three System	
1.5	43.44	37.62	46.34	40.13	
2.5	29.04	25.15	30.98	26.83	
4	17.78	15.40	18.98	16.44	
6	11.06	9.58	11.80	10.22	
10	7.40	6.41	7.88	6.82	
16	1.58	3.97	4.9	4.24	
25	2.89	2.50	3.08	2.67	
35	2.10	1.80	2.23	1.94	
50	1.55	1.30	1.65	1.44	
70	1.10	0.94	1.15	1.00	
95	0.79	0.68	0.83	0.70	
120	0.63	0.55	0.66	0.56	
150	0.52	0.46	0.55	0.48	
185	0.42	0.37	0.44	0.40	
240	0.34	0.30	0.35	0.30	
300	0.28	0.26	0.30	0.26	
400	0.24	0.22	0.24	0.22	
500	0.23	0.20	0.23	0.20	
630	0.20	0.18	0.21	0.18	
800	0.19	-	0.20	-	
1000	0.18	-	0.18	-	

**Above voltage drops (volts/km/amps) shall be multiplied with rated current & length of Cable in K.M. to calculate total voltage drop in particular length and size of cables.

* Selection criteria of MV/HV cable size for primary distribution

SCOPE

following assumption

The conductor size in the cables for any installation is also governed by its ability to carry short circuit current of system. For L.V. distribution cable may be selected on the basis of continuous load current. But in case of MV/HV distribution it is always safer to select the cable on the basis of ability of conductor to carry expected short circuit current. Short circuit current rating of cable should in line with short circuit capacity of damping apparatus such as circuit breakers. Transformers & reactor etc. beside its capacity to carry desired load current. Short circuit ratings of cables each size are given in relevant tables & have been calculated on the basis of IEC-949 & IEC-986 & on the

- a) Temperature of conductor just prior to short circuit i) With XLPE insulation - 90 Deg., C
 - ii) With PVC insulation 70 Deg. C
- b) Maximum permissible conductor temperature during short circuit
- i) With XLPE insulation 250 Deg. C ii) With PVC insulation - 160 Deg. C
- c) Volumetric specific heat of the conductor
- i) With Aluminium conductor 2.5 x 10-3J/Deg. C/MM3 ii) With Copper conductor-3.45 x 103J/Deg. C/MM3 d) Receprocal of temperature co-efficient of resistance at 9 Deg. C
- i) With Aluminium conductor-228 With Copper conductor - 243.5 ii)
- Short circuit current rating at different duration may be calculated as
- Ish (for duration = Ish (for 1 Sec.) Ish for 1 Sec. Duration is given in relevant tables in KA
- t=Time duration required to be calculated of short circuit in Sec.

SELECTION CRITERIA OF hH.V/MV CABLES FOR PRIMARY DISTRIBUTION

	REQUIRED DATAS		F	OR EXAMPLE
1)	Nominal System voltage at H.T. Side			11KV
2)	Short circuit level for H.T. System			25KA
3)	Fault withstand time for H.T. CBs			0.5SEC
4)	Formula for calculating H.T. cable size			
	With Aluiminium, cond/XLPE insulated cable =	IshXt	=	25X 0.5
		0.094	-	0.94
				188

Hence nearest higher size 240sqmm is required With Copper cond. / XLPE insulated cable = Ish X tV 25 X√0.5

0.143 0.143 124

Hence nearest higher size 150sqmm is required

FLECTRICAL FORMULAS FOR CALCULATING A C. LOAD CURRENT

ELLOTHIOAL TOTHIOLAGTOTI GALOGLATII	IG A.O. LOAD COMMENT	
Load current in Amps when KVA is given	for Single phase (A.C.) KVA X 100 V	for Three phase (A.C.) <u>KVA X 100</u> 1.732 X V
Load current in Amps when Kilo Watt is given	for Single phase (A.C.) KW X 1000 VXpf	for Three phase (A.C.) <u>KW X 1000</u> 1.732 X V X pf
Load current in Amps when H.P. is given	for Single phase (A.C.) H.P. X 746 VX%EFf X pf	for Three phase (A.C.) H.P. X 746 1.732 X VX % EFf X pf

V = Nominal system voltage in Vollts, pf=Power factor, KVC = Kilo Volts Ampere, H.P. = Horse Power

Unarmoured PVC Control Cable IS: 1554 (Pt - D - 1988)

No. of Cores	Thickness	Thickness of	Thickness of	Approx.	Approx.	Standard		t Rating
& Cross Sectional Area	of PVC Insulation (Nom.)	PVC Innersheath (min.) Extruded	PVC Outersheath (Nom.)	O.D.	Net Weight of Cable	Delivery Length in Mtrs.	Direct in Ground	In Air / Duct
NO x mm2		mm	mm	mm	Kg / Km		Amps.	Amps.
2 x 1.5	0.8	0.3	1.8	11.8	185	1000	23	20
3 x 1.5	0.8	0.3	1.8	12.3	190	1000	21	17
4 x 1.5	0.8	0.3	1.8	13.2	225	1000	21	17
5 x 1.5	0.8	0.3	1.8	14.1	260	1000	16	14
6 x 1.5	0.8	0.3	1.8	15.1	295	1000	15	13
7 x 1.5	0.8	0.3	1.8	15.1	315	1000	14	13
10 x 1.5	0.8	0.3	1.8	18.4	425	1000	13	11
12 x 1.5	0.8	0.3	1.8	18.9	480	1000	12	10
14 x 1.5	0.8	0.3	1.8	19.8	535	1000	11	10
16 x 1.5	0.8	0.3	1.8	20.7	595	1000	11	9
19 x 1.5	0.8	0.3	2.0	22.5	720	1000	10	9
24 x 1.5	0.8	0.3	2.0	25.8	880	1000	9	8
27 x 1.5	0.8	0.3	2.0	26.3	960	1000	9	8
30 x 1.5	0.8	0.3	2.0	27.2	1040	1000	9	7
37 x 1.5	0.8	0.3	2.0	29.1	1230	1000	8	7
2 x 2.5	0.9	0.3	1.8	13.0	230	1000	32	27
3 x 2.5	0.9	0.3	1.8	13.6	240	1000	27	24
4 x 2.5	0.9	0.3	1.8	14.6	290	1000	27	24
5 x 2.5	0.9	0.3	1.8	15.7	335	1000	23	19
6 x 2.5	0.9	0.3	1.8	16.9	385	1000	21	18
7 x 2.5	0.9	0.3	1.8	16.9	420	1000	20	17
10 x 2.5	0.9	0.3	1.8	20.8	570	1000	18	15
12 x 2.5	0.9	0.3	2.0	22.2	690	1000	17	14
14 x 2.5	0.9	0.3	2.0	23.2	775	1000	16	13
16 x 2.5	0.9	0.3	2.0	24.3	860	1000	15	13
19 x 2.5	0.9	0.3	2.0	25.5	985	1000	14	12
24 x 2.5	0.9	0.3	2.0	29.4	1215	1000	13	11
27 x 2.5	0.9	0.3	2.0	30.0	1330	1000	12	10
30 x 2.5	0.9	0.3	2.0	31.0	1450	1000	12	10
37 x 2.5	0.9	0.4	22	34.1	1790	1000	11	9

- 1. Solid / Stranded annealed copper conductor & Tinned / Bare
- 2. General Purpose / HR PVC insulation
- 3. Cores laid up (filled if needed)
- FRLS / General Purpose PVC Inner sheath
 FRLS / General Purpose PVC Outer sheath

Max. Conductor D. C. Resistance at 20 Deg C - Conductor Size :

1.5 sq. mm - 12.1 Ohm / km (Bare). 12.2 W/ km (Tinned)

2.5 sq. mm - 7.41 Ohm / km (Bare), 7.56 W/ km (Tinned)

* Dimensions specified are with stranded conductor.

Arı	noure	d PVC	Со	ntrol	Ca	ble l	IS:	: 155	4 (P	t - D	- 198	38)	
No. of Cores	Thickness	Thickness of	ST	RIP ARMOU	JRED CA	BLE		WIRE ARM	OURED C	ABLE	Standard	Curren	t Rating
& Cross Sectional Area	of PVC Insulation (Nom.)	Innersheath (min.) Extruded	Strip Size	Thickness of PVC outer sheath	Approx OD	Approx Net Weight of Cable	Strip Size	Thickness of PVC outer sheath	Approx OD	Approx Net Weight of Cable	Delivery Length in Mtrs.	Direct in Ground Amps	In Air/ Duct.
NO x mm2	mm	mm	mm	(Min) mm	mm	mm	mm	(Min) mm	mm	mm		-	
2 x 1.5	0.8	0.3	-	-	-	-	1.4	1.24	13.6	415	1000	23	20
3 x 1.5	0.8	0.3	-	-	-	-	1.4	1.24	14.1	430	1000	21	17
4 x 1.5	0.8	0.3	-	-	-	-	1.4	1.24	15.0	490	1000	21	17
5 x 1.5	0.8	0.3	-	-	-		1.4	1.24	15.9	545	1000	16	14
6 x 1.5	0.8	0.3	-	-	-	-	1.4	1.24	16.9	605	1000	15	13
7 x 1.5	0.8	0.3	-	15.	-	-	1.4	1.24	16.9	630	1000	14	13
10 x 1.5	0.8	0.3	-	12		-	1.4	1.24	20.6	835	1000	13	11
12 x 1.5	0.8	0.3	4x0.8	1.24	19.5	760	1.6	1.40	21.5	950	1000	12	10
14 x 1.5	0.8	0.3	4x0.8	1.24	20.8	830	1.6	1.40	22.4	1040	1000	11	10
16 x 1.5	0.8	0.3	4x0.8	1.24	21.7	920	1.6	1.40	23.3	1130	1000	11	9
19 x 1.5	0.8	0.3	4x0.8	1.24	23.1	1040	1.6	1.40	24.7	1265	1000	10	9
24 x 1.5	0.8	0.3	4x0.8	1.24	26.4	1250	1.6	1.40	28.0	1510	1000	9	8
27 x 1.5	0.8	0.3	4x0.8	1.24	26.9	1355	1.6	1.40	28.5	1610	1000	9	8
30 x 1.5	0.8	0.3	4x0.8	1.24	27.8	1430	1.6	1.40	29.4	1700	1000	9	7
37 x 1.5	0.8	0.3	4x0.8	1.24	29.7	1670	1.6	1.40	31.3	1960	1000	8	7
2 x 2.5	0.9	0.3	-				1.4	1.24	14.8	500	1000	32	27
3 x 2.5	0.9	0.3	-				1.4	1.24	15.4	520	1000	27	24
4 x 2.5	0.9	0.3	-				1.4	1.24	16.4	590	1000	27	24
5 x 2.5	0.9	0.3	-				1.4	1.24	17.5	660	1000	23	19
6 x 2.5	0.9	0.3	-				1.4	1.24	18.7	745	1000	21	18
7 x 2.5	0.9	0.3	-				1.4	1.24	18.7	780	1000	20	17
10 x 2.5	0.9	0.3	4x0.8	1.24	21.8	900	1.6	1.40	23.4	1110	1000	18	15
12 x 2.5	0.9	0.3	4x0.8	1.24	22.8	1020	1.6	1.40	24.4	1240	1000	17	14
14 x 2.5	0.9	0.3	4x0.8	1.24	23.8	1130	1.6	1.40	25.4	1340	1000	16	13
16 x 2.5	0.9	0.3	4x0.8	1.24	24.9	1210	1.6	1.40	26.5	1455	1000	15	13
19 x 2.5	0.9	0.3	4x0.8	1.24	26.1	1355	1.6	1.40	27.7	1605	1000	14	12
24 x 2.5	0.9	0.3	4x0.8	1.24	30.0	1655	1.6	1.56	32.0	1970	1000	13	11
27 x 2.5	0.9	0.3	4x0.8		30.6	1770	1.6	1.56	32.6	2100	1000	12	10
30 x 2.5	0.9	0.3	4x0.8		32.0	1940	1.6	1.56	33.6	2250	1000	12	10
37 x 2.5	0.9	0.4	4x0.8		34.7	2300	2.0	1.56	37.1	2900	1000	11	9

Construction

- 1. Solid / Stranded annealed copper conductor & Tinned / Bare
- 2. General Purpose / HR PVC insulation
- 3. Cores laid up (filled if needed)
- 4. FRLS / General Purpose PVC Inner sheath
- 5. Armouring round galvanised steel wires / strips
- 6. FRLS / General Purpose PVC Outer sheath

Max. Conductor D. C. Resistance at 20 Deg C - Conductor Size : 1.5 sq. mm - 12.1 Ohm / km (Bare). 12.2 W/ km (Tinned)

- 2.5 sq. mm 7.41 Ohm / km (Bare). 7.56 W/ km (Tinned)
 * Dimensions specified are with stranded conductor.

						TECHNICAL DETAIL FOR DICARS 11 KV 2 5 SO MM COPPER COND	DETAIL FOR	DICARS 1.1	KV 2.5	SOMMOS	OPPER	COND						
					XLPE IN	XLPE INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CONTROL CABLES	ALVANIZED	STEEL WIRE	STRIP,	ARMOUR	ED CON	TROL CA	BLES					
		Casble	Casble Code - 2XY, 2XFY,2XWY PHISICAL PARAMETERS	2XFY,2XWY METERS							Ref Spec	ification	Ref Specification : IS 7098 PART-1	PART-1				
	Minimum	Nom		UNARMOURED(2XY)	RED(2XY)		AR	ARMOURED WITH FLAT STRIPS (2XFY)	ITH FLAT	STRIPS	(2XFY)		A	ARMOURED WITH ROUND WIRES (2XWY)	WITH ROL	JND WIR	ES (2XWY)	
No of cores	Thick of Inner Sheath (mm)	thick of outer Sheath (mm)	Approx Overall Diameter (mm)	Approx Overall Diameter (mm)	Approx	Approx Net Wt of cable (kg/km)	Nomonal Thickness of Armour	Minimum Thickness of outr.sth	Approx Overall Diameter (mm)	Overall rr (mm)	Approx Net Wt of cable (kg/km)	orox Net Wt of cable (kg/km)	Armour Wire Dia	Minimum Thickness of outer.sth	Approx Overall Diameter (mm)	Approx Overall Diameter (mm)	Approx Net Wt of cable (kg/km)	et Wt of g/km)
			Solid	Std, Cond	Solid	Std, Cond	Strip (mm)	(mm)	Solid	Std, Cond	Solid	Std, Cond	(mm)	(mm)	Solid	Std, Cond	Solid	Std, Cond
2	0.3	1.8	11	12	175	181.7192	N/A	N/A	N/A	N/A	A/A	N/A	1.40	1.24	12	13	313	327
3	0.3	1.8	11	12	202	203.2118	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	13	13	356	371
4	0.3	1.8	12	13	236	237.5254	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	14	14	410	427
5	0.3	1.8	13	14	274	276.356	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	15	466	485
9	0.3	1.8	14	15	313	315.4037	N/A	N/A	N/A	N/A	A/A	N/A	1.40	1.24	15	16	524	545
7	0.3	1.8	14	15	343	346.2108	N/A	N/A	N/A	N/A	N/A	N/A	1.40	1.24	15	16	551	571
10	0.3	1.8	17	18	470	474.8049	N/A	N/A	N/A	N/A	A/A	N/A	1.60	1.4	19	19.84	746	774
12	0.3	1.8	18	19	537	542.2067	0.80	1.4	18.3	19	743	767.8	1.60	1.40	20	21	819	848
14	0.3	1.8	18	20	209	612.8641	0.80	1.4	19.1	20	821	846.6	1.60	1.40	21	22	899	929
16	0.3	2	20	21	969	703.2809	0.80	1.4	20.0	21	905	929.2	1.60	1.40	22	23	1042	1079
19	0.3	2	21	22	799	807.4583	0.80	1.4	21.0	22	1011	1040.2	1.60	1.40	23	24	1158	1196
24	0.3	2	24	26	066	1000.681	0.80	1.4	24.2	25	1238	1273.0	1.60	1.40	26	27	1409	1456
27	0.3	2	24	26	1087	1098.98	0.80	1.4	24.7	26	1333	1369.7	1.60	1.40	26	28	1506	1554
30	0.3	2	25	27	1188	1201.59	0.80	1.4	25.5	27	1439	1476.8	2.00	1.40	27	28	1617	1667
37	0.3	2	27	30	1424	1440.36	0.80	1.4	27.4	59	1684	1725.3	2.00	1.56	29	31	1928	1985
40	0.3	2	28	31	1528	1545.713	0.80	1.56	28.8	30	1823	1868.0	2.00	1.56	30	32	2048	2108
44	0.4	2.2	31	33	1732	1751.34	0.80	1.56	31.1	33	2026	2076.2	2.00	1.56	34	35	2454	2533
52	0.4	2.2	32	35	1994	2016.336	0.80	1.56	32.4	34	2285	2337.6	2.00	1.56	35	37	2728	2810
61	0.4	2.2	34	37	2294	2320.277	0.80	1.56	34.3	36	2588	2644.8	2.00	1.56	37	39	3055	3143

TECHNICAL DETAIL FOR DICABS 1.1 KV 1.5 SO,MM COPPER COND, XLPE INSULATED, GALVANIZED STEEL WIRE/STRIP ARMOURED CONTROL CABLES

Ref Specification: IS 7098 PART-1

XLPE INSULATED, GALVANIZED STEEL W
Casble Code - 2XY, 2XFY, 2XFY, 2XWY

	_				_	_	_	_	_	_		_	_		_	_	_				_	
		Wt of cable cm)	Std,Cond	287.8932	321.5263	365.1311	410.7302	458.3237	476.0019	628.7541	680.0654	740.3512	863.6892	950.0707	1149.618	1219.326	1301.261	1490.591	1580.307	1725.495	1912.495	2328.878
	ARMOURED WITH ROUND WIRES (2XWY)	Approx Net Wt of cable (kg/km)	Solid Cond	274.5976	307.167	349.0433	392.781	438.3802	456.0584	602.1628	652.4104	711.0343	828.8603	913.0187	1105.156	1173.752	1253.761	1438.718	1525.989	1666.212	1850.173	2250.174
	N GNUOS	Approx Overall Diameter (mm)	Std, Cond	12.2	12.7	13.5	14.3	15.2	15.2	18.2	18.7	19.4	20.7	21.6	24.6	25.1	25.8	27.6	28.6	9.08	31.8	34.7
	D WITH B	Approx Diamet	Solid	12	12	13	14	15	15	17	18	19	20	21	23	24	52	56	27	59	30	33
	ARMOURE	Minimum Thickness of outer.sth	(mm)	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.56	1.56
		Armour Wire Dia	(mm)	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	2.00
		Approx Net Wt of cable (kg/km)	Std,Cond	A/N	N/A	653.8714	712.9126	790.4488	960.5115	1025.797	1100.066	1272	1351.986	1477.419	1652.33	1890.895						
	ARMOURED WITH FLAT STRIPS (2XFY)	Approx Net Wt cable (kg/km)	Solid	N/A	634.4719	692.5843	769.1596	936.0195	1000.824	1074.261	1244.305	1323.235	1446.522	1620.12	1827.028							
	LAT STF	Approx Overall Diameter (mm)	Std, Cond	N/A	20	21	22	52	52	56	28	59	31	32	34							
	WITHE	Approx Diamet	Solid	N/A	18	19	22	22	23	22	26	27	59	31	32							
	ARMOURE	Minimum hickness of outr.sth	(mm)	A/A	N/A	N/A	N/A	N/A	A/A	N/A	N/A	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.56
		Nomonal Thickness of Armour	Strip (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	08'0	0.80	08'0	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
		- Approx Net Wt of cable (kg/km)	Std,Cond	143.8749	158.3315	179.2653	204.4551	229.8483	247.5265	334.4733	375.2557	419.0902	464.2812	527.4895	670.8936	729.439	792.0256	937.4488	1002.607	1097.935	1254.423	1465.158
	ED(2XY)	Approx	Solid	138	153	174	198	223	241	325	366	409	454	516	929	714	9//	920	382	1078	1234	1441
	UNARMOURED(2XY)	Approx Overall Diameter (mm)	Std,Cond	10.2	10.7	11.5	12.3	13.2	13.2	16.2	16.7	17.4	18.3	19.2	22.6	23.1	23.8	25.6	26.6	28.6	29.8	32.0
PHISICAL PARAMETERS		Approx Overall Diameter (mm)	Solid	8.6	10.2	11.0	11.8	12.6	12.6	15.4	15.8	16.5	17.4	18.2	21.4	21.8	22.5	24.2	25.1	27.0	28.1	30.2
ISICAL PA	Nom	thick of outer Sheath (mm)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2	2	2	2	2	2	2	2.2
Ŧ	Miniminm	Thick of Inner Sheath (mm)		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
		No of cores		2	e	4	2	9	7	10	12	14	16	19	24	27	30	37	40	44	25	61

General Properties of XLP	E Insulated Cables
Specific Gravity	0.93
Dielectric loss factors (tan 6) at 20° C	0.0004
Volume resistivity at 20° C	10 ¹⁷
Max. Permissible operating conductor Temp°C	90
Max. Permissible short circuit Temp°C	250
Short Time overload Temp°C	130
Dielectric constant at 20°C	2.35
Power factor at max conductor Temp°C	0.008
Impulse level volts / Mill	2000
Thermal reisitivity ° / C cm / watt	350
Partial discharge pC	8

A Few Striking Features Of XLPE Cables:

High Continuous Current Ratings: Higher continuous operating temperature 90°C for conductor permits XLPE cables to withstand higher current than PVC or PILC cable.

High Short Circuit Ratings: Maximum allowable continuous temperature during short circuit is 250°C, which is vastly increased as compared to PVC or PILC cables.

Little Deformation at High Temperature: Under combined heat and mechanical pressure XLPE suffers less deformation compared to other solid dielectrics.

High Emergency Load Capacity: XLPE cable can be operated at 130°C during emergency. This should not exceed 2 hours a day, 100 hrs, per year or 500 hrs, during the lifetime of the cable. Due to this 20% higher current than the specific rating may be carried for this period.

Low Dielectric Loss: The dielectric loss angle of XLPE is much lower than conventional dielectric. The dielectric losses are quadratically dependent on the voltage. Hence use of XLPE cable at higher voltages would generate considerable saving in costs.

Low Charging Currents: The charging currents are considerably lower than outer dielectrics. This permits close setting of protection relays.

Short Circuit Current Rating for XLPE Cables

Short circuit Rating I second duration for Copper and Aluminium XLPE Cables (Isc Current in Kamps)

Nominal Size	XLPE	Insulated
Sq.mm	Copper	Aluminium
25	3.6	2.4
35	5	3.3
50	7.1	4.7
70	10	6.6
95	13.6	9
120	17.1	11.3
150	21.4	14.2
185	26.4	17.5
240	34.3	22.6
300	42.9	28.3
400	42.9	28.3
500	71.4	47.2
630	90	59.4
800	114.3	75.5
1000	142.9	94.3

Rating for any other duration:

- 1) Max. Initial conductor Temperature during operation: 90°C
- 2) Max. Final Conductor Temperature during short circuit: 250°C

Formula relating short Circuit Rating with t second duration It = Isc

where It = short circuit Rating for t seconds.

t = duration in seconds.

Isc = short circuit rating for I second.

Emergency overload: cable may operate under overload conditions under such condition conductor temperature not to exceed 130°C for maximum 100 hours per year and not more than 500 hours during lifetime of cable. This is approximately 20% higher than specified rated current during the emergency period.

CAPACITANCE

"DICABS" Approximate Capacitance for single core & Multi core cable in Microfarad per KM at 50 C/S

Sq mm	6.35/11kv (E) or	11/11kv (UE)	12.7/22KV (E)	19/33KV (E)
	6.6/6.6kv (uE)			
25	-	-	-	-
35	0.21	0.16	0.15	1-
50	0.23	0.17	0.16	0.13
70	0.26	0.19	0.18	0.14
95	0.29	0.21	0.20	0.16
120	0.33	0.24	0.23	0.18
150	0.35	0.25	0.24	0.18
185	0.38	0.27	0.26	0.20
240	0.43	0.31	0.29	0.22
300	0.47	0.33	0.31	0.23
400	0.52	0.37	0.35	0.26
500	0.58	0.41	0.38	0.28
630	0.65	0.45	0.42	0.31
800	0.76	0.52	0.49	0.35
1000	0.83	0.57	0.53	0.38

REACTANCE

"DICABS" Approximate Reactance for Multi Core Cable in ohms per KM at 50 C/s

Sq mm	6.35/11kv (E) or	11/11kv (UE)	12.7/22KV (E)	19/33KV (E)
	6.6/6.6kv (uE)			
25	0.122	0.136		
35	0.116	0.13	0.134	
50	0.111	0.124	0.128	0.143
70	0.106	0.114	0.118	0.133
95	0.101	0.109	0.112	0.126
120	0.096	0.103	0.106	0.119
150	0.095	0.102	0.105	0.117
185	0.089	0.097	0.100	0.112
240	0.85	0.093	0.096	0.107
300	0.083	0.091	0.093	0.104
400	0.081	0.088	0.09	0.100

"DICABS" Approximate Reactance for single core cable in ohm per KM at 50 C/S, Cables laid trefoil touching

	U	NARMOURED			1	RMOURED		
Sq mm	6.35/11kv(E) or	11/11kv (UE)	12.7/22 kv(E)	19/33kv (E)	6.35/11kv(E) or	11/11kv(UE)	12.7/22kv(E)	19/33kv(E)
	6.6/6.6kv (UE)				6.6/6.6kv (UE)			
25	-	-	-	-	-	-	-	
35	0.132	0.142	0.146	-	0.143	0.152	0.156	(*)
50	0.126	0.136	0.139	0.153	0.137	0.146	0.149	0.162
70	0.116	0.126	0.129	0.142	0.126	0.135	0.138	0.151
95	0.11	0.119	0.123	0.135	0.12	0.128	0.133	0.144
120	0.105	0.114	0.117	0.128	0.115	0.124	0.126	0.136
150	0.103	0.112	0.115	0.125	0.113	0.122	0.124	0.134
185	0.1	0.107	0.11	0.12	0.11	0.116	0.119	0.128
240	0.096	0.102	0.105	0.115	0.105	0.112	0.114	0.123
300	0.093	0.099	0.101	0.112	0.102	0.108	0.111	0.12
400	0.09	0.096	0.098	0.107	0.098	0.105	0.106	0.115
500	0.087	0.093	0.096	0.104	0.096	0.102	0.104	0.112
630	0.085	0.09	0.092	0.1	0.093	0.099	0.1	0.108
800	0.082	0.087	0.089	0.096	0.091	0.096	0.097	0.103
1000	0.081	0.085	0.087	0.093	0.088	0.092	0.094	0.101

CURRENT RATING FOR THREE SINGLE CORE 6.35/11 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 1

Normal	Laid Dire	ect in Ground	In	Ducts		In Air
Area of Conductor	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
mm ²	Α	Α	А	А	Α	Α
25	125	97	113	87	138	107
35	148	115	133	104	172	134
50	174	135	257	122	207	160
70	213	165	192	149	253	200
95	254	197	229	177	317	245
120	288	224	259	202	368	286
150	324	251	292	226	410	324
185	364	283	328	255	480	373
240	420	328	378	295	573	445
300	474	371	427	334	655	513
400	538	425	484	283	748	603
500	605	484	545	436	857	705
630	678	550	610	495	987	821
800	754	623	697	561	1146	964
1000	819	690	737	621	1271	1094

CURRENT RATING FOR THREE SINGE CORE 12.7/22 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 3

Normal	Laid Dir	ect in Ground	In	Ducts		In Air
Area of Conductor	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
mm²	Α	А	Α	А	Α	А
35	148	114	133	103	176	143
50	173	134	156	121	215	167
70	211	164	190	148	268	207
95	252	195	227	178	319	253
120	286	221	257	199	375	291
150	323	250	291	225	427	333
185	361	280	325	252	489	380
240	417	326	375	293	565	450
300	471	367	424	330	652	521
400	534	420	481	378	777	616
500	602	478	542	430	871	709
630	675	545	608	491	1003	828
800	752	618	677	556	1159	975
1000	825	685	743	617	1317	1107

CURRENT RATING FOR THREE SINGE CORE 19/33 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 4

Normal	Laid Dire	ect in Ground	In	Ducts		In Air
Area of Conductor	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
mm ²	Α	Α	Α	Α	Α	Α
50	174	135	157	122	216	170
70	213	165	192	149	268	212
95	254	196	229	176	326	258
120	287	223	258	201	374	297
150	323	250	291	225	429	339
185	363	282	327	254	486	386
240	419	326	377	293	573	464
300	473	369	426	332	661	526
400	538	423	484	381	784	617
500	606	481	545	433	878	713
630	684	549	616	494	1014	832
800	763	620	687	558	1172	978
1000	832	689	749	617	1330	1110

CURRENT RATING FOR THREE CORE 6.35/11 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 5

Normal	Laid Dire	ect in Ground	In	Ducts		In Air
Area of Conductor	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
mm ²	А	А	А	Α	Α	Α
25	120	93	108	84	137	106
35	143	111	129	100	158	123
50	168	130	151	117	188	153
70	206	160	185	144	235	182
95	246	191	221	172	285	221
120	278	217	250	195	327	254
150	312	243	281	219	374	291
185	351	273	316	246	423	330
240	404	317	364	285	498	390
300	454	357	409	321	570	450
400	511	408	460	367	658	525
500	596	462	512	416	745	597
630	632	522	569	470	847	692

CURRENT RATING FOR THREE CORE 11/11 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 6

Normal	Laid Dir	ect in Ground	In	Ducts		In Air
Area of Conductor mm ²	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
111111	Α	Α	А	Α	А	Α
25	121	94	109	85	142	110
35	144	112	130	101	161	133
50	168	131	151	118	191	158
70	206	160	185	144	238	197
95	246	191	221	172	288	237
120	278	217	250	195	329	257
150	312	243	281	219	376	292
185	350	273	315	246	424	331
240	404	316	364	284	498	390
300	453	357	408	321	569	448
400	512	408	461	367	657	523
500	571	462	514	416	745	602
630	634	518	571	466	846	696

CURRENT RATING FOR THREE CORE 12.7/22 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 7

Normal	Laid Dire	ect in Ground	In	Ducts		In Air
Area of Conductor mm ²	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
	Α	Α	А	Α	А	Α
35	142	110	128	99	162	132
50	166	129	149	116	192	157
70	203	158	183	142	238	194
95	242	188	218	169	288	224
120	274	213	247	192	329	257
150	307	239	276	215	375	292
185	345	269	311	242	425	332
240	397	312	357	281	499	390
300	446	352	401	317	570	448
400	503	402	453	362	657	523
500	564	455	508	410	747	602
630	626	513	563	462	826	695

CURRENT RATING FOR THREE CORE 19/33 KV XLPE CABLES ACCORDING TO IS: 7098 (Part 2)

Table :- 8

Normal	Laid Dire	ect in Ground	In	Ducts		In Air
Area of Conductor	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium
mm²	Α	А	Α	Α	А	Α
50	167	130	150	117	196	158
70	204	158	184	142	241	198
95	243	188	219	169	290	236
120	274	214	247	193	332	270
150	308	239	277	215	377	293
185	345	270	311	243	426	348
240	398	312	358	281	500	408
300	447	352	402	317	571	449
400	504	402	454	362	657	522
500	566	454	509	409	750	600
630	630	515	567	464	852	694

APPROXIMATE A.C. RESISTANCE OF CONDUCTOR (OHM/KM) AT MAX. OPERATING CONDUCTOR TEMPERATURE & XLPE CABLES

Table :- 9

Nominal Area Of Conductor	XLPE 0 (90'	
(sq.mm)	Aluminium	Copper
1.5	23.2	15.5
2.5	15.5	9.5
4	9.5	5.9
6	5.9	3.94
10	3.94	2.34
16	2.44	1.47
25	1.53	0.931
35	1.11	0.671
50	0.818	0.496
70	0.565	0.344
95	0.409	0.248
120	0.323	0.197
150	0.264	0.160
185	0.210	0.129
240	0.161	0.099
300	0.129	0.080
400	0.102	0.064
500	0.082	0.052
630	0.065	0.043

APPROXIMATE REACTANCE AT 50 HZ (OHMS/KM) SINGLE CORE HV XLPE CABLES

Tohlo - 10

Nominal Area of	3.3 KV	3.3 KV (E) & (UE)	9.9	6.6 KV (E)	Ē	11 KV (E)	±	11 KV (UE)	22	22 KV (E)	33	33 KV ()
(Sq.mm)	Unarm- oured	* Armoured	Unarm- oured	* Armoured	Unarm- oured	* Armoured	Unarm- oured	* Armoured	Unarm- oured	* Armoured	Unarm- oured	* Armoured
25	0.116	0.125	0.130	0.138	0.136	0.143	0.148	0.153	,			
35	0.110	0.119	0.125	0.131	0.130	0.136	0.140	0.145	0.143	0.146		
50	0.103	0.112	0.119	0.123	0.124	0.127	0.134	0.137	0.136	0.139	0.140	0.153
70	0.0980	0.107	0.110	0.116	0.115	0.120	0.124	0.129	0.126	0.131	0.133	0.145
95	0.0945	0.102	0.105	0.110	0.109	0.114	0.117	0.122	0.120	0.126	0.127	0.137
120	0.0912	0.0981	0.102	0.106	0.105	0.110	0.115	0.119	0.117	0.121	0.122	0.132
150	0.089	0.0953	660.0	0.103	0.102	0.107	0.111	0.115	0.113	0.117	0.117	0.128
185	0.0865	0.0925	0.095	0.100	0.099	0.105	0.107	0.112	0.108	0.113	0.116	0.124
240	0.0835	0.0897	0.092	0.0976	0.095	0.101	0.102	0.107	0.104	0.109	0.111	0.121
300	0.0816	0.0874	0.091	0.0961	0.093	0.0982	660.0	0.105	0.102	0.106	0.106	0.117
400	0.080	0.0862	0.089	0.0940	0.090	0.0949	0.097	0.101	0.098	0.102	0.103	0.112
200	0.0787	0.0843	0.087	0.0921	0.088	0.0917	0.093	0.0974	0.0952	0.100	0.0994	0.109
630	0.0774	0.0830	0.085	0.0890	0.085	0.0892	0.091	0.0956	0.092	0.0967	0960.0	0.106
800	0.0764	0.0815	0.082	0.0891	0.083	0.0893	0.088	0.0937	0.0889	0.0948	0.0925	0.101
1000	0.0761	0.0818	0.081	0.0874	0.081	0.0874	0.086	0.0913	0.0871	0.0926	0.0907	0.100

APPROXIMATE REACTANCE AT 50 HZ (OHMS/KM) THREE CORE HV XLPE CABLE

Table :- 11

Nominal Area of Conductor (Sq.mm)	3.3kv (E)& (UE)	6.6kv (E)	11kv (E)	11kv (UE)	22kv (E)	33kv (E)
25	0.0981	0.118	0.125	0.139	-	-
35	0.0940	0.113	0.118	0.132	0.135	-
50	0.0878	0.105	0.111	0.123	0.127	0.140
70	0.0842	0.100	0.105	0.116	0.119	0.132
95	0.0813	0.095	0.101	0.111	0.113	0.125
120	0.0785	0.092	0.0964	0.106	0.109	0.120
150	0.0769	0.090	0.0952	0.103	0.105	0.117
185	0.0755	0.087	0.0913	0.100	0.102	0.113
240	0.0737	0.084	0.0879	0.096	0.0980	0.108
300	0.0725	0.083	0.0866	0.094	0.0960	0.105
400	0.0712	0.081	0.0839	0.091	0.0925	0.101
500	0.0688	0.079		-	-	-
630	0.0678	0.077	-		-	-

APPROXIMATE CAPACITANCE (MICROFARADS/KM) HV XLPE CABLES

Three 0.16 0.16 0.19 0.21 0.22 0.24 33 KV (E) Single 0.18 0.20 0.25 0.25 0.27 0.34 0.34 0.15 0.15 0.20 0.21 0.23 0.27 0.30 0.33 Three 22 KV (E) Single 0.20 0.21 0.22 0.24 0.29 0.36 0.36 0.40 0.46 hree 0.14 0.15 0.19 0.23 0.24 0.29 0.29 0.35 0.35 11 KV (UE) Single 0.14 0.15 0.22 0.22 0.23 0.23 0.33 0.33 0.50 0.50 0.50 Three 28 32 33 42 137 46 11 KV (E) Single Three 6.6 KV (E) Single Three 3.3 KV (E) & (UE) Single core Area of Conductor Nominal (Sq.mm)

12 - ald

APPROXIMATE THREE PHASE VOLTAGE DROP (VOLTS/AMP/KM) HV CABLES

Table :- 13

		_		_		_		_				_		_	
	33 KV (E)	റാ	,		0.89	0.64	0.48	0.40	0.34	0:30	0.25	0.23	0.21		
		AL			1.4	1.0	0.74	09.0	0.50	0.41	0.34	0.29	0.25		
	/ (E)	CO		1.2	0.89	0.63	0.47	0.39	0.33	0.28	0.24	0.22	0.19		
	22 KV (E)	AL		1.9	1.4	1.0	0.73	0.59	0.49	0.40	0.33	0.28	0.24		
	11 KV (UE)	CO	1.6	1.2	0.89	0.63	0.47	0.39	0.33	0.29	0.24	0.21	0.19		
	11 KV	AL	2.7	1.9	1.4	1.0	0.73	0.59	0.49	0.41	0.32	0.28	0.24		
	11 KV (E)	CO	1.6	1.2	0.88	0.62	0.46	0.38	0.32	0.27	0.23	0.20	0.18	,	,
		AL	2.7	1.9	1.4	1.0	0.73	0.58	0.49	0.40	0.32	0.27	0.23		,
	6.6 KV (E)	CO	1.6	1.2	0.88	0.62	0.46	0.38	0.32	0.27	0.22	0.20	0.18	0.16	0.15
		AL	2.7	1.9	1.4	66.0	0.73	0.58	0.48	0.39	0.31	0.27	0.23	0.20	0.17
	3.3 KV (E)&(UE)	CO	1.6	1.2	0.87	0.61	0.45	0.37	0.31	0.26	0.21	0.19	0.17	0.15	0.14
		AL	2.7	1.9	1.4	66.0	0.72	0.58	0.48	0.39	0.31	0.26	0.22	0.19	0.16
lable 13	Nominal Area of	(Sq.mm)	25	35	20	20	98	120	150	185	240	300	400	200	630

Table :- 14

	Max. Short circuit	current on the condu	ctor during 1 s, kA					
0	Conductor temperature before the Short Circuit							
Cross Section mm		ninium ductor	Cond Cond	per uctor				
	65∘C	90∘C	65∘C	90∘C				
25	2.6	2.4	3.9	3.6				
35	3.6	3.3	5.5	5.0				
50	5.2	4.7	7.8	7.2				
70	7.2	6.6	11.0	10.0				
95	9.8	9.0	14.9	13.6				
120	12.4	11.3	18.8	17.2				
150	15.5	14.2	23.5	21.5				
185	19.2	17.5	29.0	26.5				
240	24.8	22.7	37.6	34.5				
300	31.1	28.3	47.0	42.9				
400	41.4	37.8	62.7	57.2				
500	51.8	47.2	78.4	71.5				
630	65.2	59.5	98.7	90.1				
800	82.8	75.6	125	114				
1000	104	94.5	157	143				
1200	124	113	188	172				
1400	145	132	219	200				
1600	166	151	251	229				
2000	207	189	313	286				
Per mm ²	0.104	0.0945	0.157	0.143				

Table :- 15

Metallic Screen Cross Section, mm ²		Metallic Screen temperature before the short circuit		
Copper Screen	Lead Sheath	50°C	70°C	
16	110	3.4	3.3	
25	170	5.4	5.1	
35	240	7.5	7.1	
50	340	11	10	
95	650	21	19	
150	1030	32	30	
300	2070	64	60	
Per mm ² Cu	Per mm² Pb	0.215 0.032	0.203 0.029	

CLASSIFICATION OF TEST FOR XLPE CABLE

TYPE TEST:-

The following shall constitute the type tests:

- a) Test on Conductor:
 - i) Annealing test (for copper)
 - ii) Resistance test
- b) Physical test on insulation:
 - i) Test for thickness and dimensions of insulation
 - ii) Tensile strength and elongation at break
 - iii)Thermal ageing in air oven
 - iv) Hot set test
 - v) Shrinkage test
 - vi) Void and Contaminants test
- c) Resistivity test for semi-conductor lavers
- d) Test for concentric metallic screen:
 - i) Test for concentric copper wire
 - ii) Test for concentric copper tape
- e) Thickness of metallic sheath.
- f) Test of armouring material:
- i) Dimensions
 - ii) Tensile strength and elongation at break
 - iii) Wrapping test
 - iv) Resisitivity test
- g) Physical tests for outer sheath:
 - i) Tensile strength and elongation at break
 - ii) Thermal ageing in air oven
 - iii) Loss of mass
 - iv) Heat shock test
 - v) Hot shock test
 - vi) Shrinkage test
 - vii) Thermal stability
 - viii) For PE sheath
 - i) Carbon black content ii) Tensile strength and elongation at break before and after ageing
 - iii) Hot-deformation
- h) Flammability test (for PVC outer sheathed cables only)
- k) i) Thermal ageing on complete cable sample
 - ii) Tensile ageing on complete cable sample
 - iii) Resisitivity tests for semi-coducting layer
- m) Bending test followed by P.D. Test
- n) Dielectric power factor and capacitance measurement at ambient temperature
- o) Dielectric power factor measurement at elevated temperature
- p) Load cycle test followed by P.D measurement
- g) Impulse withstand test followed by HV test

SPECIAL PROVISION

Test at (p) and (q) may be carried out on different samples.

Note :- Partial discharge test shall be carried out on full drum length

ACCEPTANCE TESTS

The following shall constitute acceptance tests

- a) Conductor resistance test
- b) Annealing test
- c) Test for dimensions of insulation
- d) Hot set test for insulation
- e) Void and contaminants test

- F) Test for thickness of metallic sheath
- g) Test for thickness of outer sheath
- h) Partial discharge test
- i) High voltage test
- i) Measurement of capacitance

MAXIMUM PERMISSIBLE TENSILE STRENGTH FOR CABLES

A) For cables pulled with stocking :-

PVC and XLPE insulated armoured power cables P = 9 D² PVC and XLPE insulated unarmoured power cables P = 5 D²

Paper insulated armoured power cables

Belated & H type Cables

P = 3 D²

Belated & H type Cables $P = 3 D^2$ HSL type Cables $P = D^2$

Where P = pulling force in Newtons.

D = outer diameter of cables in mm

B) For cable pulled by pulling eye: - if the Cables are pulled by gripping the conductor directly with pulling eye, the maximum permissible tensile stress depends on the material of the conductor and on their cross section as given below: - For aluminium conductor 4kgs/mm²

For copper conductor 7kgs/mm²

DEPTH OF LAYING

TABLE:-32

The recommended depth of trench for laying the cables are:

S.NO.	Voltage Grade	Depth of trench
1	Upto 1.1.kv	46 to 76 Cms. + Radius of Complete Cable.
2	3.3 to 11kv	91 Cms. + Radius of complete Cable.
3	22 kv and 33 kv	107 Cms. + Radius of complete Cable.
4	110 kv and above	135 Cms. + Radius of Complete Cable.

HANDLING & STORAGE

Handling (Unloading at site): On receipt of cable drums visual inspection of drums should be made ensuring drum packing is original. While unloading the cables certain precautions are to be taken to ensure the safety of

- 1. The cable drums should not be dropped or thrown from railway wagons or trucks during unloading operations as the shock may cause serious damage to cable layers. A crane should be used for unloading cable drums. When litting drums with the crane, it is recommended that the lagging should be kept in place to prevent the flanges from curshing on to the cable. If the crane is not available, a ramp should be prepared with approximate inclination of 1:3 or 1:4. The cable drum should be rolled over the ramp by means of ropes and winches. Additionally a sand bed at the foot of the ramp may be prepared to brake the rolling the cable drum.
- 2. Cable should not be dragged along the earth surface.
- Cable ends should always be sealed by means of suitable end sealing materials to prevent moisturisation of cores and armour.
- Drums should be rolled in direction of arrow marked on the drum

Storage:

Cables should be stored in a dry covered place to prevent exposure to climatic conditions and wear and tear of wooden drums and it should preferably on a concrete surface/firm surface which will not cause the drums to sink and thus lead to flange rot and extreme difficulty in moving the drums.

All drums should be stored in such a manner as to leave sufficient space between them for air circulation. It is desirable for drums to stand on battens placed directly under the flanges.

In no case should the drums be stored, "On the Flat:, i.e., with flange horizontal.

Laying:

shown in Fig.

For laying of cables special cares to be taken to prevent sharp bending, kinking, twisting. Cable should be unwound from drum by proper mounting the cable drum on a cable whele making sure the spindle is strong enough to carry the weight without bending and that it is lying horizontally in the bearings so as to prevent the drum creeping to one side or the other while its rotating.

However, following salient points are to be considered during laying procedure of cables laid in racks and in built-in trenches.

- For laying of cables power cables to be placed at the bottom most layer and control cables at top most layer.
- Single core power cable for use on A.C. system shall be laid in delta formation supported by non-magnetic material. Trefoil clamps of suitable size are to be placed at regular intervals but preferably not more than 800 mm. Axial spacing of two circuits in delta formation shall not be less than 4 times the cable dia.

In case of multicore power cables, cables shall be laid side by side, with spacings not less than one cable diameter. However derating factors for cables laid on trenches are to be referred.

Multicore power cables and single core D.C. circuits may be clamped by means of galvanised mild steel saddles but 1.1 KV single core cables should be clamped by means of non-magnetic saddles. The saddles shall not be placed at intervals more than 1500 mm. for horizontal and 1200 mm. for vertical runs.

- Multicore control cables can be laid touching each other on cable racks and wherever required may be taken in two layers. They should be clamped by means of PVC straps both for horizontal and vertical runs (alternatively, fabricated aluminium clamps may be used it requiar intervals.
- a) If the cables are buried directly in ground I.S. 1255 is to be followed for code of practice. However, generally cables are laid 1000 mm. below finished ground level at any point of cable run and 75 mm. of sand cushioning to be provided.
- b) In loose soil concrete pillar should be provided for as support and hence pipes are recommended to the used for cable path.
- If there is a possibility of menchanical damage, cables should be protected by means of mild steel covers placed on racks.
 - While laying cables, special care to be taken at bends.
 Followings are the recommended bending radius for power and control cables.

Voltage Rating	PVC and XLPE Cables				
KV	Single Core	Multi Core			
Upto 1.1	15 D	12 D			
Above 1.1 but upto 11 K.V.	15 D	15 D			
Above 11 K.V.	20 D	15 D			

Where 'D' is overall diameter of cable.

 Maximum safe pulling force (when pulled by pulling eye) Aluminium Conductor Cables: 3.0 Kg/mm2 Copper Conductor Cables: 5.0 Kg/mm2 Proper method of pulling of cable should be used.

TESTING

INSULATION RESISTANCE MEASUREMENT OF CABLE

The voltage rating of I.R. Tester (Megger) Should be chosen as following table:

Voltage grade of cable	Rating of IR Tester (Megger)	Voltage grade of cable	Rating of IR Tester (Megger)
1.1 KV	500 V	11 KV	1000 V
3.3 KV	1000 V	22 KV	2500 V
6.6 KV	1000 V	33 KV	2500 V

Testing during laying:

All new cables shall be megger-tested before jointing. After jointing is completed all LV Cables shall be megger-tested.

End Terminations & Jointing:

Termination and jointing of Power & Control Cables shall be done by means of compression methods using solderless tinned copper/ Aluminium terminal lugs. For control cables terminations, ring tongue or reducer pin type terminal lug can also be used to suit the purpose.

QUALITY CONTROL

It has been rightly said that "Quality is never an accident, it is always the result of intelligent efforts".

In the manufacture of cables, intelligent efforts are incorporated to achieve quality. For a quality end products, control starts from proper design of the product. All raw materials are selected carefully and only materials of high quality are used in production. Having done this, stage wise inspection is done to ensure conformity with the requirements of relevant Indian Standards where these apply.

· Wire diameter

Stage - Wise Inspection i) Wire-Drawing

viii) Outer Sheath

1)	Wire-Drawing		Wire diameter Surface Shape Quality of joints in the wire
ii)	Stranding of Wires		Quality of joints in the wires Compaction of conductor Shape of Conductor Dimensions Resistance of Conductor
iii)	Insulation	:	Dimension over Insulation, Thickness of Insulation,
iv)	Curing (for XLPE Insulation)	:	Hot set test, Tensile strength & elongation test.
v)	Screening (for H.T. Screened cables)	:	Dimension over screen, thick of screen visual examination of surface/defects.
v)	Laying Up	:	Sequence of Cores Direction of lay Diameter over laid up cores Circularity
vi)	Inner Sheath	:	Thickness of Sheath Diameter over Sheath Surface Uniformity Circularity Porosity
vii)	Armouring	•	Diameter of Wires/ Dimensions of Strips Direction of lay Coverage Quality of Joints of Wires

: Thickness of Sheath Diameter

over Sheath Tightness of Sheath Eccentricity Porosity, Embossing

TEST

The tests on cables have been classified broadly in four categories as follows:

Routine Tests:

Tests carried out on each cable to check the requirements which are likely to vary during production.

Type Tests:

Tests carried out to prove conformity with the specification. These are intended to prove the general qualities and design of a given type of cable.

Acceptance Tests:

Tests carried out on samples taken from a lot for the purpose of acceptance of the lot.

Optional Tests:

Special tests to be carried out when required by agreement between the purchaser and the manufacturer.

Special tests required for FRLS Cables can also be carried out at our works i.e. Halogen gas generation test to IEC - 754 Part - I, Smoke generation test to ASTMD 2843, Oxygen index test and Temperature index test to ASTMD - 2863, Flammability test to (1) IEC-332-1, (2) Swedish Chimney test to SS-4241475 Class F3 & (3) IEC-332-3, Flame resistance test to IEE-332-3.

Together with the most advanced equipment available, we are able to offer to our valued customers assurances of highest quality and strict adherence to the required specification. As a third party guarantee, our cables have passed rigorous tests at various Government recogonized test laboratories such as CPRI, Shri Ram Test House, ERDA Baroda, National Test House, ERTL, RTC.

Routine Tests, Type Tests, Acceptance Tests and Optional Tests as per the Indian Standard Specification for Power and Control Cables with PVC insulation, Cross linked Polyethylene insulation and Special Tests are given in the Annexure.

Power by expertise DICABS"HV & LV CABLES

Diamond Power Infrastructure Ltd. is the country's first and only integrated transmission equipment manufacturer. Our comprehensive range of high-performance HVI/U cables covers a wide range from 1.1kVto 550kV. The ingenious CCV method of manufacturing, coupled with German technology, has made the cables range one of the top-most power transmission products in the country. What's more, it comes with a 10-year warranty against manufacturing defects a first-of-lis-kind assurance that comes only with global standards of quality control and processes.

IN THE GREAT POWER EQUATION, INTEGRATION IS THE KEY

Conductors, Power Cables, Aerial Bunch Cables & Wires

numr Transformers 245KV 350MVA

tribution Transformers upto 36KV, 2500KVA

Wires

• I. I KV to SSO KV • WITH CCV PROCESS

True value addition comes from going that extra mile and make ends meet. Like the end to end solutions that we at Diamond Power Infrastructure Lid. have been offering our clients. Solutions that are seamlessly aligned and extensively developed so that they don't have to go anywhere else to find answers. We call it the power of integration. Our clients call foreace of mind.

EPC Contracts Transmission & Distribution Conductors Power Cables Power & Distribution Transformers

DIC ABS

Corporate Office

"Essen House", 5/9-10, B.I.D.C., Gorwa, Vadodara, 390016 Tel.: 0265-2284328, 2283969, 2280973 Fax: 0265-2280528 • Email: marketing@dicabs.com

GLOBAL Office

DIAMOND POWER GLOBAL HOLDINGS LTD
Office No-108, Al Was1 Building, Opp. Burj Khalifa 1"Interchange,
Shelkh Zayed Road, Next to Porsche Showroom, P.o. Box: 11765 Dubai, U.A.E.
Tel::+971-43804030 • Fax:+971-43804110 • Email: marketing@dicabs.ae

Branch Offices

New Delhi - B-62, 6th Floor, Himalaya House, 23, Kasturba Gandhi Marg, New Delhi-110001 Tel.: +011-45662531 • Email: delhi@dicabs.com

Mumbai - 349 Business Point Office No. 401, Western Express Highway, Andheri East, Mumbai - 400069 Tel.: 022-28314733 • Email: mumbai@dicabs.com

Ahmedabad - +91 9714856569

Chennai - +91 9327237171 Meerut - +91 9958372727

Surat - +91 8140368464 Hyderabad - +91 9703398866

www.dicabs.com