www.dicabs.com

DIC ABS[®]

EHV (XLPE) CABLES

CONTENTS

- Preface 🚺
- Salient Features of Hybrid CCV Line Manufacturing Process
 - Advantages of XLPE
 - Constructional Details of EHV XLPE Cables
 - Construction Details of Different Cables
 - Manufacturing Flow Chart of HV/EHV Cables 10
- Schematic Diagram of Continuous Catenary Vulcanisation (CCV) line 11

PREFACE - 66kV 550kV XLPE CABLES

Diacobs is one of the world's leading manufacturers of Extra High Voltage cables and also one of a few total solution providers of underground transmission systems. We have decades of heritage as a cable manufacturer, along with in-depth capabilities and facilities to research, design, develop and manufacture products and solutions. We are also ceaselessly investing in quality control.

We provide power systems from 1kV to 500kV such as XLPE cable. Due to rapid industrial and economic growth it has become necessary to transmit bulk power to sustain growth. It is also very important that while transmitting bulk power, logistics and safety consideration are given due weightage.

At Dicabs, we understand our responsibility and our potential in leading society to remarkable improvements in varied facets of human life and society. For the past many decades we successfully took the challenge of providing our clients with solutions and support systems to service their global business. We recognize the significance of our customer oriented services for the betterment of society and its operations.

We believe that our responsibility should not end in mere execution of our customer's project but should extend towards contributing our knowledge and expertise in returning value to the company and to the society within which they live. Our vision is to provide world class services and products to our clients with a sense of responsibility and accountability towards them, their employees and ultimately society.

The most ideal solution considering all the aspects is to transmit bulk power through an EHV cable network. Keeping in line with the basic philosophy of the organization, Dicabs is now manufacturing Extra High Voltage cables from 66kV to 550kV, called XLPE cables.

Salient Features of Hybrid CCV Line Manufacturing Process

The system adopted for triple extrusion of EHV XLPE Cables with dry cure dry cooled process in a Hybrid CCV line ensures the following excellent characteristics:

- The Insulation has no eccentricity.
- The cross-linking of XLPE is of the highest g r a d e which guarantees excellent electro-mechanical characteristics.
- The simultaneous extrusion of the inner and outer semi conducting layers and the insulation prevents treeing and

other irregularities.

 Uniformity of quality is maintained for all products, as the manufacturing processes are controlled.

EHV cables are manufactured and supplied in accordance to the following applicable standards:

• IEC-62067 • IEC-60840 • IS 7098 (Part III)

And any other international specifications like ASTM, BS, DIN, JIS etc.

At Diamond Power Infrastructures Ltd. state of the art manufacturing and testing facilities for Extra High Voltage cables up to and including 500 kV are available, which is unique in the country.

	Manufacturing						
	Compacted circular conductors						
	Aluminium	Up to 1000 sqmm					
Conductor	Copper	Up to 800 sqmm					
Conductor	Segmental (Milliken) type circular conductor						
	Aluminium	1200 sqmm and above					
	Copper	1000 sqmm and above					
Compound handling and clean room	The material handling system at DPIL and state of the art feeding system. The s maintained at clean class 10000, whereas feeding area is maintained at clean class 10 the compound reduces the inter granular frictio	semi-conducting feeding area is the XLPE insulation compound 00. The gravity feeding system of					
Triple Extrusion	The extrusion of semi-conducting conductor screen, XLPE insulation and semi-conducting insulation screen in one operation by triple extrusion through single cross head ensures perfect banding of all the layers and results in optically smooth interface which removes all possibilities of irregularities and microvoids formation.						
Curing under inert (Nitrogengas) atmosphere.	The cross linking process under inert at absolutely dry which eliminates all chance during whole life of the cable.						
	Testing						
High Voltage Test system	The series resonance test system 70 test lab is capable of testing long lengths of rating at a small input power. This helps in a time and money required for extra joints in the c	Extra High Voltage up to 500 kV major saving to its customers in					
Impulse voltage test	The impulse voltage test equipment at 240 kV Jules. The high energy rating of the t voltage cable samples up to 500 kV rating havi	est equipment can test extra high					
Partial discharge test	The shielded room of DPIL cable tes partial discharges of less than 2 pc.	ting is capable of detecting					
Other electrical and physical tests	DPIL cable laboratory is fully equiped to perform all routine, acceptance and type tests for Extra High Voltage cables up to 500 kV rating. As per the requirements of IEC 62067, IEC 60840, IS 7098 part-3 and other relevant international specifications.						

ADVANTAGES OF XLPE

XLPE is an abbreviation of cross-linked polyethylene. This has been recognized world-wide as excellent dielectric material for wires and cables. If first went into commercial production in the 1960. Polyethylene, which is a thermoplastic materials converted into a thermosetting material by a process of cross-linking. The linear chain structure of polyethylene is changed into three-dimensional network structure. By this change, polyethylene, which has outstanding dielectric properties, is made resistant to extreme temperature.

High Continuous Current Ratings: Higher continuous operating temperature 90°C for conductor permits XLPE cables to carry higher current than PVC or Paper Insulated cables.

High Short Circuit Ratings: Maximum allowable continuous temperature during short circuit for XLPE insulated cables is 250°C, which increases the short circuit rating of XLPE cables drastically compared to PVC & Paper insulated cables. Low Deformation at High Temperature: Under combined heat and mechanical pressure XLPE suffers less deformation compared to other solid dielectrics.

High Emergency Over Load Capacity: XLPE cobles can be operated at 130°C during emergency. This should not exceed 100 Hours in any 12 consecutive months and 500 Hours during the lifetime of the coble.

Low Dielectric Loss: The dielectric losses of XLPE is much below the conventional solid dielectrics like PVC & EPR. This results in considerable saving in costs when power transmission at higher voltages is done through XLPE cobles.

Low Charging Currents: The charging currents are considerably lower than other dielectrics. This permits close setting of protection relays.

The high resistance to heat deformation and ageing in hot air provide an important advantage in cable rating and is of special significance at locations where the ambient temperature is high. These, along with better resistance to environment stress cracking and a low dielectric constant, make XLPE cables particularly suitable for high voltage and extra high voltage applications.

GENERAL PROPERTIES OF EHV XLPE INSULATED CABLES

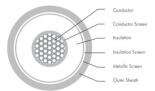
Specific Gravity	0.93	
Tan δ at rated voltage		
1.at ambient temperature (20°C)	10x10-4	
2.at operating temperature (90°C)	10x10-4	
Volume resistivity at 20 °C	1017	
Max. Permissible operating conductor $Temp^\circC$	90°C	
Max. Permissible Temp during short circuit $^\circ \! C$	250°C	
Short Time overload Temp ${}^\circ\!C$	130°C	
Dielectric constant at 20 °C	2.35	

CONSTRUCTION DETAILS OF EHV XLPE CABLES

The XLPE Cable has the construction of a conductor (copper or aluminium) insulated with cross-linked polyethylene and then shielded with metallic screen (seam velded corrugated aluminum or copper wire shield), to be covered by PVC or polyethylene for anticorrosion followed by a semiconducting layer.

Conductor

The conductor consists of annealed copper or hard aluminium stranded wires and classified into two major types vizcompacted circular and segmental compacted circular (Milliken Conductor).


The compacted circular conductor consists of annealed copper or hard drawn alurinium stranded wires. The Milliken (segmented compacted circular) conductor consists of wires stranded together in segmental form, normally 4-5 segments and then compacted to get a circular shope. Conductor sizes up to and including 1000 sq. mm. may be compacted circular and 1200 sq. mm. and above size of conductors new mode in M-5 segments. The segmental conductors help in minimizing the increase in AC resistance caused byskin effect and proximity effect.

Conductor Screen

The conductor screen consists of an extruded semi-conducting polyethylene to minimize electrical stresses due to the stranded configuration of the conductor. The semiconducting moterial used for conductor screen has no deleterious effect on the conductor. Semiconductor before the extruded semi-conducting layer.

Insulation Screen

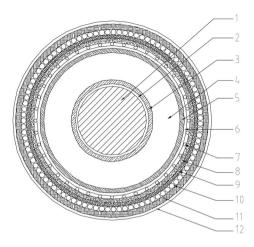
The insulation screen is provided over the insulation by extruded semi-conducting compound. This minimizes the possibility of ionization on the outer surface of insulation to make the dielectric stresses radial.

Insulation

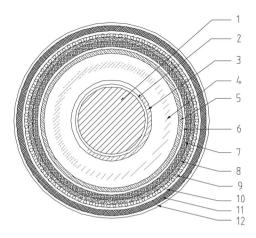
The insulation material is extruded crass-linked polyethylene. The conductor screen, the insulation and the insulation screen are extruded simultaneously in one process (TRIPLE EXTRUSION) to ensure that the screen and insulation are intimately bonded together and free from all possibilities of voids between anyers. The extrusion process is carried out under strictly controlled atmospheric conditions. The dry cured & dry cooled process under the inert atmosphere (N2 Gas) enables to enhance the electromechanical and thermal characteristics of LPLE insulation, which further helps in increasing conductor stress, thereby reducing the thickness of insulation.

Metallic Screen

The metallic screen consists of wire shield, corrugated aluminium sheath or lead sheath. The lead sheath is provided with or without copper wire screen to withstand the SC rating of screen. The corrugated aluminium sheath and lead sheath also provides a radial moisture barrier to the cable construction.

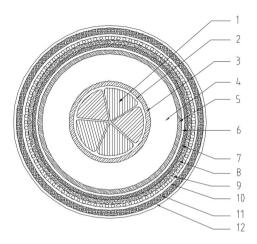

Outer Sheath

To protect the metallic sheath from electrical or chemical corrosion, it is covered by PE or PVC sheath.

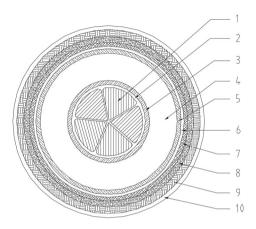


66 kV 1 CORE 630 sqmm COMPACTED CIRCULAR ALUMINIUM CONDUCTOR HIGH VOLTAGE CABLE AS PER CUSTOMER SPECIFICATIONS

- 1 Compacted circular Aluminium conductor
- 2 Semi-conducting tapes
- 3 Extruded semi conducting thermosetting layer Conductor Screen
- 4 Cross-linked Polythylene insulation dry cured
- 5 Extruded semi conducting thermosetting layer insulation screen
- 6 Water swellable semi-conducting tapes applied helically with suitable overlap longitudinal water barrier
- 7 Concentric copper wire screen with open helix copper tape
- 8 Semi conducting water swellable tape
- 9 Poly laminated aluminium tape with HDPE inner sheath
- 10 H.D. Aluminium wire armour
- 11 PVC outer sheath
- 12 Over all extruded semi-conducting layer


132 kV 1 CORE 800 sqmm COMPACTED CIRCULAR COPPER CONDUCTOR EXTRA HIGH VOLTAGE CABLE AS PER IEC-62067

- 1 Compacted circular copper conductor
- 2 Semi-conducting tapes
- 3 Extruded semi conducting thermosetting layer conductor screen
- 4 Cross-linked Polyethylene insulation as per IEC 62067 dry cured
- 5 Extruded semi conducting thermosetting layer insulation screen
- 6 Water swellable semi-conducting tapes applied helically with suitable overlap longitudinal water barrier
- 7 Poly laminated aluminium tape with PE inner sheath
- 8 Semi conducting water swellable tape
- 9 Concentric copper wire screen with open helix copper tape
- 10 Non conducting water swellable tape
- 11 PE outer sheath
- 12 Over all extruded semi-conducting layer



220 kV 1 CORE 1200 sqmm SEGMENTAL TYPE MILLIKEN COPPER CONDUCTOR EXTRA HIGH VOLTAGE CABLE AS PER IEC-62067

- 1 Annealed copper segmental milliken conductor
- 2 Semi-condcting tapes
- 3 Extruded semi-conducting thermosetting layer conductor screen
- 4 Cross-linked Polyethylene insulation as per IEC 62067 dry cured
- 5 Extruded semi-conducting thermosetting layer insulation screen
- 6 Water swellable semi-conducting tapes applied helically with suitable overlap longitudinal water barrier
- 7 Lead alloy E Sheath
- 8 Semi conducting water swellable tape
- 9 Concentric copper wire screen with open helix copper tape
- 10 Non conducting water swellable tape
- 11 PE outer sheath
- 12 Over all extruded semi-conducting layer

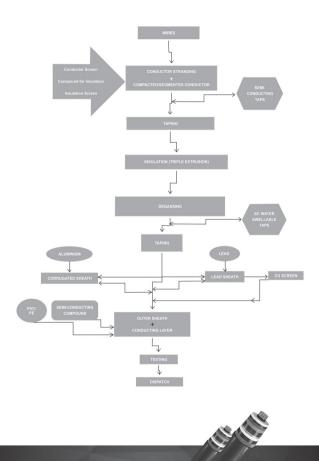
220 kV 1 CORE 1200 sqmm SEGMENTAI TYPE MILLIKEN COPPER CONDUCTOR EXTRA HIGH VOLTAGE CABLE AS PER IEC-62067

- 1 Annealed copper segmental milliken conductor
- 2 Semi-conducting tape
- 3 Extruded semi-conducting thermosetting layer conductor screen
- 4 Cross-linked polyethylene insulation as per EC 62067 dry cured
- 5 Extruded semi-conducting thermosetting layer insulation screen
- 6 Wate swellable semi conducting tapes applied helically with suitable overlap longitudinal water barrier
- 7 Copper woven semi-conducting tape
- 8 Corrugated Aluminium seamwelded sheath with anti carrosion protection, Radil water barrier
- 9 Extruded, Black HOPE type ST-7 to IEC 62067 outer sheath
- 10 Over all extruded semi-conducting layer

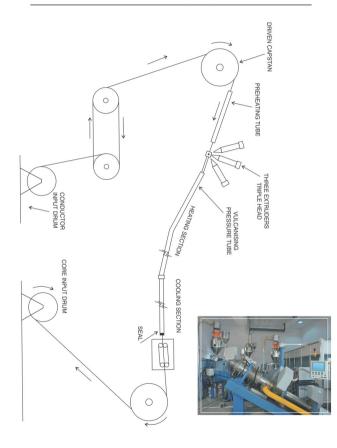
CONSTRUCTION DETAILS OF DIFFERENT CABLES

Corrugated Aluminium Sheath

Lead Sheath



Copper Wire Shield with Poly Laminated AL Sheath



Copper Wire Shield with Lead Sheath

MANUFACTURING FLOW CHART OF HV/EHV CABLES

SCHEMATIC DIAGRAM OF CONTINUOUS CATENARY VULCANISATION (CCV) LINE

DICABS

ELECTRICAL TEST PARAMETERS

Voltage Designation	Highest System Voltage	High Voltage Test		Partial Discharge Test	Impulse Voltage Test	Voltage Test After Impulse Test	
Uo/U	Um	Voltage kV	Duration Min		kV	kV	Duration Min
38/66	72.5	95	30	57	325	95	15
64/110	123	160	30	96	550	160	15
76/132	145	190	30	114	650	190	15
127/220	245	318	30	190	1050	254	15
220/380	420	440	60	330	1425	440	15
290/500	550	580	60	435	1550	580	15

THICKNESS OF METALLIC SHEATH

*Calcula	ted Diameter Under	Min. Thickness of Metallic Sheath, 1				
Mete	allic Sheath, mm	Lead	Alumiı	nium Sheath		
Over	Upto & Including		Smooth	Corrugated		
	40	1.9	1.9	0.6		
40	45	2.0	2.2	0.6		
45	50	2.1	2.4	0.6		
50	55	2.2	-	0.6		
55	60	2.3	-	0.8		
60	65	2.4	-	0.8		
65	70	2.5	-	0.8		
70	75	2.6	-	0.8		
75	80	2.7	-	0.8		
80	85	2.8	-	0.9		
85	90	2.8	-	0.9		
90	95	2.9	-	0.9		
95	100	3.0	-	0.9		
100	105	3.1		1.0		
105	110	3.2	-	1.0		
110	115	3.3	-	1.0		

*Note: Fictitious diameter calculated as described in Annex B of IS 7098 (Part-3)

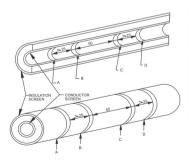
THICKNESS OF INNER SHEATH

*Calculated Diame	eter Under Inner Sheath mm	Minimum Thickness of Inner Sheath mm
Over	UP to and Including	
	40	0.9
40	45	1.0
45	50	1.1
50	55	1.2
55	60	1.2
60	65	1.3
65	70	1.4
70	75	1.5
75	80	1.6
80	85	1.6
85	90	1.7
90	95	1.8
95	100	1.9
100	105	2.0
105	110	2.0
110	115	2.1
115		2.2

*Note: Fictitious diameter calculated as described in Annexe B of IS 7098 (Part -3)

DIMENSIONS OF ARMOUR ROUND WIRE

	*Calculated Diameter Under Armour mm					
Above	UP to and Including					
40	40	2.00				
55	55	2.50				
70	70	3.15				
		4.00				


*Note: Fictitious diameter calculated as described in Annexe B of IS 7098 (Part-3)

THICKNESS OF OUTER SHEATH EHV CABLE

Und	ed Diameter er Outer heath mm	Thicknes Shea Unarı Ca	Minimum of Outer Sheath for Armoured Cables	
Above	UP to and Including	Nominal mm	minimum mm	mm
	40	2.4	1.72	1.72
40	45	26	1.88	1.88
45	50	2.8	2.04	2.04
50	55	3.0	2.20	2.20
55	60	3.2	2.36	2.36
60	65	3.4	2.52	2.52
65	70	3.6	2 68	2 68
70	75	3.8	2.84	2.84
75	-	4.0	3.00	3.00

*Note: Fictitious diameter calculated as described in Annexe B of IS 7098 (Part-3)

RESISTIVITY TEST FOR SEMI-CONDUCTOR LAYER

The resistivity test for extruded semi-conducting layers applied over the conductor and over the insulation shall be determined by measurements on test pieces taken from core.

The procedure for measurement shall be in accordance with Annexe C of IS 7098 (Part-3).

The measurement shall be made at a temperature within $\pm 2^{\circ}$ C of the rated maximum normal operating conductor temperature.

The resistivity shall not exceed the following:

Conductor Screen Core Screen

Nom. Cross Section of conduction	Nom. Thickness of insulation	Lead Sheath	Nom. Area of copper screen	Nom. Outer Sheath thickness	Approx. overall cable diameter	of cable (Cu-cond	Approx. wt. of cable (AI- cond uctor)	. Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(sqmm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	9.0	1.8	187	2.7	56	8.5		0.22	2.6
300	9.0	1.8	186	2.7	58	9.2		0.21	2.9
400	9.0	1.9	183	2.8	61	10.5	8.1	0.26	3.1
500	9.0	2.0	180	2.9	64	11.9	8.9	0.28	3.3
630	9.0	2.1	176	3.0	68	13.7	9.9	0.31	3.7
800	9.0	2.2	171.	3.2	75	16.3	11.4	0.36	4.3
1000	9.0	2.3	167	3.3	79	18.7	12.6	0.38	4.5
1200	9.0	2.4	162	3.4	84	21.7	14.0	0.42	5.0
1400	9.0	2.5	156	3.5	90	24.5	15.5	0.47	5.6
1600	9.0	2.6	152	3.6	93	27.0	16.6	0.48	5.7
2000	9.0	2.7	145	3.8	99	31.0	18.8	0.53	6.3

66 kV (E) Lead Sheathed Cables

Note: Fault rating of Lead Sheath in combination with copper screen is 31.5 kA for one second duration

110 kV (E) Lead Sheathed Cables

Nom. Cross Section of conduction	Nom. Thickness of insulation	Lead Sheath	Nom. Area of copper screen	Nom. Outer Sheath thickness	Approx. overall cable diameter	of cable (Cu-cond	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(sqmm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	17.0	2.2	172	3.2	73	11.7		0.14	2.8
300	15.0	2.2	172	3.2	72	12.0		0.16	3.2
400	15.0	2.3	169	3.3	76	13.4	11.1	0.17	3.4
500	15.0	2.4	165	3.4	79	15.0	12.0	0.19	3.8
630	15.0	2.4	163	3.5	82	16.6	12.8	0.21	4.2
800	15.0	2.5	157	3.6	88	19.3	14.4	0.24	4.8
1000	15.0	2.7	150	3.7	93	22.2	16.1	0.25	5.0
1200	15.0	2.8	144	3.8	98	25.3	17.6	0.28	5.6
1400	15.0	2.8	140	4.0	103	28.1	19.1	0.30	6.0
1600	15.0	2.8	138	4.1	106	30.4	20.0	0.32	6.4
2000	15.0	3.0	128	4.3	113	34.9	22.7	0.34	6.8

Note: Fault rating of Lead Sheath in combination with copper screen is 31.5 kA for one second duration

Nom. Cross Section of conduction	Nom. Thickness of insulation	Lead Sheath	of copper screen	Nom. Outer Sheath thickness	Approx. overall cable diameter	of cable (Cu-cond	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(sqmm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	21.5	2.5	160	3.6	84	14.1		0.12	2.9
300	20.5	2.5	160	3.6	84	14.6		0.13	3.1
400	19.0	2.5	160	3.6	84	15.2	12.9	0.15	3.6
500	18.0	2.5	160	3.6	85	16.2	13.3	0.17	4.1
630	18.0	2.6	155	3.7	89	18.3	14.5	0.18	4.3
800	17.5	2.7	149	3.8	94	20.9	16.0	0.21	5.0
1000	17.5	2.8	144	3.9	98	23.6	17.5	0.23	5.5
1200	17.5	2.8	141	4.0	103	26.6	18.8	0.25	6.0
1400	17.5	2.9	134	4.1	109	34.4	25.4	0.27	6.4
1600	17.5	3.0	129	4.2	111	32.3	21.9	0.28	6.7
2000	17.5	3.2	118	4.4	118	36.9	24.7	0.30	7.2

132 kV (E) Lead Sheathed Cables

Note: Fault rating of Lead Sheath in combination with copper screen is 31.5 kA for one second duration

220 kV (E) Lead Sheathed Cables

Nom. Cross Section of conduction	Nom. Thickness of insulation	Lead Sheath	of copper screen	Nom. Outer Sheath thickness	Approx. overall cable diameter	of cable (Cu-cond	Approx. wt of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(sqmm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
500	26	2.9	195	4.2	103	22.3	19.4	0.13	5.2
630	25	2.9	193	4.2	105	23.8	20.0	0.15	6.0
800	25	3.0	186	4.4	111	26.9	22.0	0.17	6.8
1000	25	3.2	177	4.5	115	30.1	24.0	0.18	7.2
1200	25	3.3	170	4.6	120	33.7	25.9	0.19	7.6
1400	25	3.4	162	4.7	126	37.1	28.1	0.20	8.0
1600	25	3.4	160	4.8	129	39.5	29.2	0.21	8.0
2000	25	3.6	148	5.0	136	44.6	32.4	0.23	9.2

Note: Fault rating of Lead Sheath in combination with copper screen is 31.5 kA for one second duration

Nom. Cross Section of conduction	Nom. Thickness of insulation	Nom. Aluminum Sheath Thickness	Nom. Outer Sheath thickness	Approx. overall cable diameter	Approx. wt. of cable (Cu-cond uctor)	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	9	2.1	2.7	60	4.7	-	0.22	2.6
300	9	2.0	2.8	62	5.4	-	0.24	2.9
400	9	1.9	2.9	65	6.3	4.0	0.26	3.1
500	9	1.8	3.0	68	7.3	4.4	0.28	3.3
630	9	1.7	3.1	72	8.8	5.0	0.31	3.7
800	9	1.7	3.3	80	10.8	5.9	0.36	4.3
1000	9	1.7	3.4	84	12.9	6.8	0.38	4.5
1200	9	1.8	3.5	89	15.4	7.6	0.42	5.0
1400	9	1.9	3.7	97	17.7	8.7	0.47	5.6
1600	9	1.9	3.8	100	19.8	9.4	0.48	5.7
2000	9	2.0	4.0	107	23.2	11.0	0.53	6.3

66kV(E) Corrugated Aluminium Sheathed Cables

Note: Fault rating of Alluminium Sheath is 31.5 kA for one second duration

110kV(E) Corrugated Alu	minium Sheathed Cables
-------------------------	------------------------

Nom. Cross Section of conduction	Nom. Thickness of insulation	Nom. Aluminium Sheath Thickness	Nom. Outer Sheath thickness	Approx. overall cable diameter	Approx. wt. of cable (Cu-cond uctor)	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	17.0	1.7	3.3	79	6.3		0.14	2.8
300	15.5	1.7	3.3	78	6.7		0.16	3.2
400	15.5	1.7	3.4	81	7.7	5.4	0.17	3.4
500	15.5	1.8	3.5	85	9.0	6.0	0.19	3.8
630	15.0	1.8	3.6	87	10.4	6.6	0.21	4.2
800	15.0	1.9	3.7	94	12.6	7.7	0.24	4.8
1000	15.0	2.0	3.9	100	14.8	8.7	0.25	5.0
1200	15.0	2.0	4.0	105	17.4	9.6	0.28	5.6
1400	15.0	2.1	4.1	111	19.8	10.8	0.3	6.0
1600	15.0	2.2	4.2	114	22.0	11.6	0.32	6.4
2000	15.0	2.3	4.5	122	25.6	13.4	0.34	6.8

Note: Fault rating of Alluminium Sheath is 31.5 kA for one second duration

Nom. Cross Section of conduction	Nom. Thickness of insulation	Nom. Aluminium Sheath Thickness	Nom. Outer Sheath thickness	Approx. overall cable diameter	Approx. wt. of cable (Cu-cond uctor)	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
240	21.5	1.9	3.6	89	7.7	-	0.12	2.9
300	20.5	1.9	3.6	89	8.1	-	0.13	3.1
400	19.5	1.9	3.6	89	8.8	6.4	0.15	3.6
500	18.5	1.9	3.7	90	9.7	6.8	0.17	4.1
630	18.0	1.9	3.8	94	11.4	7.5	0.18	4.3
800	17.5	2.0	3.9	101	13.4	8.6	0.21	5.0
1000	17.5	2.1	4.1	105	15.7	9.6	0.23	5.5
1200	17.5	2.1	4.2	111	18.3	10.6	0.25	6.0
1400	17.5	2.2	4.4	119	20.8	11.8	0.27	6.4
1600	17.5	2.3	4.5	121	23.1	12.7	0.28	6.7
2000	17.5	2.4	4.7	128	26.7	14.5	0.30	7.2

110kV(E) Corrugated Aluminium Sheathed Cables

Note: Fault rating of Alluminium Sheath is 31.5 kA for one second duration

220 kV (E) Corrugated	Aluminium	Sheathed	Cables
-----------------------	-----------	----------	--------

Nom. Cross Section of conduction	Nom. Thickness of insulation	Nom. Aluminium Sheath Thickness	Nom. Outer Sheath thickness	Approx. overall cable diameter	Approx. wt. of cable (Cu-cond uctor)	Approx. wt. of cable (AI- cond uctor)	Maximum Capacitance	Maximum charging current
(sqmm)	(mm)	(mm)	(mm)	(mm)	(Kg/m)	(Kg/m)	(µF/km)	(A/km)
500	26	2.2	4.3	110	12.5	9.6	0.13	5.2
630	25	2.2	4.3	112	13.9	10.0	0.15	6.0
800	25	2.3	4.6	120	16.3	11.5	0.17	6.8
1000	25	2.4	4.7	124	18.7	12.6	0.18	7.2
1200	25	2.4	4.8	129	21.4	13.7	0.19	7.6
1400	25	2.5	5.0	138	24.1	15.1	0.20	8.0
1600	25	2.6	5.1	140	26.4	16.1	0.21	8.4
2000	25	2.7	5.3	147	30.2	18.1	0.23	9.2

Note: Fault rating of Aluminium Sheath is 40 kA for one second duration

NOTE: Constructional Data given in above tables are for guidance only. Cables as per National (IS 7098 – Part 3)/ International specifications IEC 62067, IEC 60502, IEC 60840 shall be offered on request.

Assumptions for Calculation of CONTINUOUS CURRENT RATING as per IEC 60287.

The continuous current carrying capacity of XLPE cables is calculated as per the following standard conditions:

a)	Ground Temperature	:	30°C	
b)	Ambient Air Temperature		40°C	
c)	Max. Conductor Temperature		90 °C	
d)	Depth of Laying	5	1.0 Mtr	
e)	Soil Thermal Resistivity	:	150°C-cm/W	
f)	Cable Installation		:	Trefoil Touching with single point or cross bonding OR Flat
	formation with			70mm clearance (Surface to surface) single point or Cross
	bonding			
g)	Frequency	:	50 Hz	
h)	Load Factor	:	100%	

Maximum Permissible Conductor Temperature and Recommended conductor temperatures for various conditions are as under:

- A. Normal Operation : 90°C
- B. Emergency Operation : 130°C
- C. Short Circuit : 250°C

CONDUCTOR RESISTANCE

Cross Sectional area of Conductor	DC Resist Conductor		AC Resistan Conductor a		
sq.mm. 95 120 150 185 240 300	AL Ω/km	CU Ω/km	AL Ω/km	CU Ω/km	
95	0.3200	0.1930	0.4110	0.2460	
120	0.2530	0.1530	0.3250	0.1960	
150	0.2060	0.1240	0.2640	0.1590	
185	0.1640	0.0991	0.2110	0.1270	
240	0.1250	0.0754	0.1610	0.0972	
300	0.1000	0.0601	0.1290	0.0780	
400	0.0778	0.0470	0.10 10	0.0618	
500	0.0605	0.0366	0.0791	0.0491	
630	0.0469	0.0283	0.0622	0.0393	
800	0.0367	0.0221	0.0497	0.0322	
1000	0.0291	0.0176	0.0380	0.0236	
1200	0.0247	0.0151	0.0326	0.0207	
1600	0.0186	0.0113	0.0251	0.0163	

Conductor Short Circuit Rating

Cross Sectional Area	Short Circu	iit Rating (1 Sec)
	AL	CU
sq.mm	kA	kA
95	8.9	13.6
120	11.3	17.2
150	14.1	21.5
185	17.4	26.5
240	22.6	34.3
300	28.2	42.9
400	37.6	57.2
500	47.0	71.5
630	59.2	90.1
800	75.2	114.4
1000	94.0	143.0
1200	112.8	171.6
1600	150.4	228.8
2000	188.0	286.0

Current Rating of Single Core 66 kV Cable

Cross- sectional		Single Point Bonding / Cross Bonding										
area of		Trefoil	Formation			Flat Fa	ormation					
conductor	In Gro	ound	In A	Air	In Gr	ound	In /	Air				
Sq mm	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp				
95	194	250	271	349	202	261	295	380				
120	221	383	312	401	230	296	341	438				
150	246	316	352	452	257	331	385	496				
185	277	354	402	515	290	372	440	566				
240	319	407	471	602	335	429	519	666				
300	358	455	537	685	377	483	594	762				
400	408	513	624	789	431	548	692	882				
500	462	576	722	904	491	620	806	1021				
630	523	644	835	1033	560	701	938	1179				
800	585	708	953	1161	632	781	1080	1341				
1000	686	816	1111	1372	723	905	1264	1592				
1200	722	871	1235	1503	790	977	1416	1763				
1600	815	965	1434	1716	907	1108	1669	2055				
2000	892	1038	1613	1897	1008	1216	1904	2317				

Current Rating of Single Core 66 kV Cable

Cross- sectional	Both End Bonding										
area of		Trefoil	Formation			Flat F	ormation				
conductor	In Gro	ound	In /	Air	In Gro	ound	In A	Air			
Sq mm	Aluminium	Aluminium Co	Aluminium Copper	Aluminium	Copper	Aluminium Copper	Copper	Aluminium	Copper		
	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp			
95	191	242	267	341	189	234	284	357			
120	215	272	307	390	211	258	324	404			
150	239	301	345	437	231	281	362	449			
185	267	334	391	494	255	305	408	501			
240	305	378	456	571	284	335	469	570			
300	339	417	516	642	309	359	524	629			
400	80	461	593	728	337	384	591	697			
500	424	507	678	821	365	407	662	767			
630	471	554	772	920	391	429	737	837			
800	516	595	866	1013	415	447	806	900			
1000	554	631	961	1115	437	465	884	976			
1200	587	660	1048	1198	453	477	946	1032			
1600	639	704	1176	1317	474	493	1030	1105			
2000	678	736	1285	1415	490	505	1101	1166			

Current Rating of single Core 110 / 132 kV Cable

Cross- sectional	Single Point Bonding / Cross Bonding										
area of		Trefoil	Formation			Flat Fa	ormation				
conductor	In Gro	ound	In A	\ir	In Gro	ound	In A	Air			
Sq mm	Aluminium	ium Copper	Aluminium	Copper	Aluminium	Copper	Aluminium	Copper			
	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp			
185	277	354	398	510	289	371	429	551			
240	319	407	467	598	335	429	505	649			
300	358	456	533	680	377	483	578	742			
400	408	514	618	783	431	548	673	859			
500	463	577	715	898	491	620	783	992			
630	523	646	826	1027	560	701	910	1145			
800	586	712	943	1155	632	782	1046	1302			
1000	666	817	1098	1362	723	905	1223	1544			
1200	721	873	1219	1492	789	977	1368	1708			
1600	816	969	1417	1707	906	1108	1612	1992			
2000	893	1043	1595	1890	1007	1217	1838	2247			

Current Rating of single Core 110 / 132 kV Cable

Cross- sectional	Both End Bonding										
area of		Trefoil	Formation			Flat F	ormation				
conductor	In Gr	ound	In A	Air	In Gr	ound	In A	lir			
Sq mm	Aluminium	Copper	Aluminium Cop	Copper	Aluminium	Copper	Aluminium	Copper			
	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp			
185	268	336	390	494	256	308	403	499			
240	306	381	455	574	286	338	465	570			
300	341	421	516	646	312	363	521	632			
400	383	466	593	735	341	389	591	705			
500	428	513	679	830	369	414	664	778			
630	475	561	775	933	396	436	741	853			
800	522	605	871	1030	420	454	815	920			
1000	559	639	970	1138	443	473	897	1003			
1200	593	668	1057	1222	459	485	961	1060			
1600	645	713	1190	1347	480	500	1050	1137			
2000	685	746	1303	1449	496	512	1123	1200			

DIC ABS"

Current Rating of Single Core 220 kV Cable

Cross- sectional	Single Point Bonding / Cross Bonding											
area of		Trefoil I	ormation			Flat Fo	ormation					
conductor	In Gr	ound	In /	Air	In Gr	ound	In A	lir				
Sq mm	Aluminium	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium	Copper				
	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp				
400	406	513	608	771	430	546	651	831				
500	461	576	703	885	490	619	756	960				
630	522	645	811	1212	558	699	878	1106				
800	585	712	927	1141	630	780	1009	1258				
1000	664	815	1077	1342	720	902	1178	1490				
1200	728	870	1195	1470	785	973	1316	1647				
1600	809	961	1386	1678	899	1101	1546	1916				
2000	896	1010	1544	1833	990	1191	1756	2147				

Current Rating of Single Core 220 kV Cable

Cross- sectional	Both End Bonding											
area of		Trefoil F	ormation			Flat Fa	ormation					
conductor	In Gro	ound	In A	lir	In Gro	ound	In A	Air				
Sq mm	Aluminium	Copper	Aluminium	Copper	Aluminium	Copper	Aluminium	Copper				
	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp				
400	384	469	589	734	344	394	585	706				
500	429	518	674	831	373	419	660	784				
630	478	566	770	935	400	442	740	862				
800	525	612	869	1038	425	461	818	935				
1000	562	646	971	1152	448	480	904	1024				
1200	595	674	1059	1237	465	493	971	1085				
1600	643	713	1188	1358	493	516	1071	1174				
2000	670	728	1286	1440	537	561	1186	1288				

Rating factor for Variation in ambient air temperature :

Air temperature °C	15	20	25	30	35	40	45	50	55	60
conductor temp 90°c										
Rating Factors	1.25	1.20	1.16	1.11	1.05	1.00	0.94	0.88	0.82	0.76

Rating factor for Variation in ground temperature:

Air temperature °C	15	20	25	30	35	40	45	50
conductor temp 90°c								
Rating Factors	1.12	1.08	1.04	1	0.96	0.91	0.87	0.82

Rating factors for grouping of single core laid direct in ground in horizontal formation

Distance betw	Number of Circuits in Group								
mm	1	2	3	4	5	6	7	8	9
120	1	0.76	0.67	0.59	0.55	0.51	0.49	0.47	0.46
200	1	0.81	0.71	0.65	0.61	0.58	0.56	0.53	0.52
400	1	0.85	0.77	0.72	0.69	0.66	0.64	0.63	0.62
600	1	0.88	0.81	0.77	0.74	0.72	0.71	0.70	0.69
800	1	0.90	0.84	0.81	0.79	0.77	0.76	0.75	0.75
2000	1	0.96	0.93	0.92	0.91	0.91	0.91	0.90	0.90

Rating factor for thermal resistivity of soil

Soil thermal resistivity Deg. C cm/watt	70	100	120	150	200	250	300
Rating factor	1.36	1.19	1.11	1.00	0.88	0.78	0.73

Rating factor for depth of laying

Depth of laying cm	90	100	120	150	160	170	180	190	200
Rating factor	1.06	1.05	1.03	1.00	0.99	0.99	0.98	0.98	0.97

Rating factor for phase spacing in flat formation

Phase Spacing (s) cm	D	D+70	D+200	D+250	D+300	D+350	D+400
Rating factor	0.93	1.00	1.03	1.05	1.07	1.08	1.10

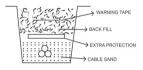
Note: D is the overall diameter of Cable

GROUP RATING FACTORS

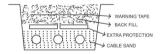
Group rating factors for cables aid in formed concrete trenches with removable covers on cable troughs where air circulation is restricted. The cables spaced by one cable diameter and trays in tiers by 300 mm. The clearance of the cable from the wall is 20 mm.

No. of troughs	No. of Groups (circuits)							
No. of froughs	1	2	3					
1	0.92	0.89	0.88					
2	0.87	0.84	0.83					
3	0.84	0.82	0.81					
4	0.82	0.80	0.79					

Group rating factors for cables laid on racks. The cables spaced by one cable diameter and racks in tiers by 300mm, the clearance between the wall and the cable is 20 mm.


	No. of Groups (circuits)							
No. of troughs	1	2	3					
1	1.0	0.97	0.96					
2	0.97	0.94	0.93					
3	0.96	0.93	0.92					
6	0.94	0.91	0.90					

INSTALLATION


- A. Underground Installation of EHV XLPE Cables
- Bending Radius The minimum bending radius for EHV XLPE cable is 20xD, where D is the overall diameter of the cable.
- 1.2 Installation in ground Underground XLPE cables are usually buried directly in the ground.

Single core cables can be laid in flat or trefoil formation as shown in figures.

THREE SINGLE CORE CABLES IN TREFOIL FORMATION

THREE SINGLE CORE CABLES IN FLAT FORMATION

- 1.3 Depth of laying As a general rule EHV cables are laid at a depth of 1 to 1.5 m. The laying depth is chosen depending on obstacles in the ground e.g. telephone cables or water pipes. There may be reasons for deeper laying, which then means a reduction of current carrying capacity.
- 1.4 Sand bedding The cable shall be completely surrounded by well compacted sand to such a thickness and of such a grain size that the cable is protected against damage. The thickness of the sand bedding should normally be a minimum of 10 cm in all directions from the cable surface. Sand with a grain size less than 8 mm is considered to give the cable a good protection.

1.5 Extra protection - Important feeders and cables at places where extended digging activity is expected can be further protected against damage by means of tubes, slabs, troughs or warning topes.

Ducts of non-magnetic material for single core cables can be mainly used at road crossing etc. The duct diameter should not be less than 1.5 times the cable diameter.

SINGLE CORE CABLES IN PROTECTING DUCTS, FLAT FORMATION

In trenches normally extra protection is obtained by means of concrete slabs and its size is to be chosen according to the expected damage. The slabs are placed directly on the cable sand.

- 1.6 Back filling Normally, the back fill consists of the material earlier excavated. However, bigger stones or pieces of rock should be removed.
- 7 Warning Tape A pre-warning tape, e.g. of yellow PVC tape should be laid in the ground.
- 1.8 Transportation In order to avoid damage to the cable, the cable drum must be handled carefully during transportation.

It is very important that the cable drum stands on the flanges during transportation, well fixed to the transport vehicle. Loading and unloading should be made by crane or forktruck, not by rolling.

Rolling of the drum should be done slowly and carefully in the direction of the arrow on the drum flange.

1.9 Cable Pulling - During the pulling, the cable drum is normally placed on jacks at the starting point and a wire winch at the other end of the trench. The pulling wire can be cannected to the cable either by a cable stocking or pulling eye to the conductor in such a manner that water or soil can not enter into the cable.

The pulling force should be restricted to the following values

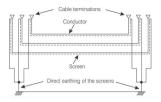
- For aluminium conductor 30 N / sqmm
- For copper conductor 50 N / sqmm

The cable should preferably be pulled from the top of the drum.

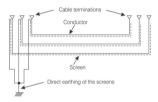
To prevent crossing of turns on the drum at a sudden pulling stop, a brake should be arranged at the cable drum and a man placed there to operate this brake, which must be applied rapidly at a stop. To protect the cable from damage during the pulling out, cable rollers should be used and placed at suitable intervals. At bends, angle rollers & required must be used in order to maintain the desired bending radius of the cable.

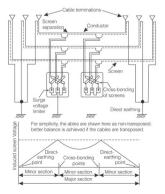
During the cable pulling, telephones or walkie-talkie should be used to ensure the internal communication is established in order to prevent accidents and to enable a sofe pulling operation.

B) Installation of XLPE cable in air


The requirement for bending radii, transportation and pulling of the cables are the same as for underground installation. For fixing of the cables, the following has to be taken into consideration.

Cable fixing	After laying of three Nos cables, the cable shall be tied up with non-magnetic metals trefoil/single clamp depending upon the laying configurations ie. trefoil/flat.
Horizontal Distance between cleats	At 1 to 1.2 meter interval or as per customer's choice.
Vertical distance between cleats	If the cable circuits are laid in tiers than the vertical spacing between the tiers shall not be less then 300mm.




SCREEN BONDING METHOD

Both-ends bonding of screens, means that the screens are connected and earthed at both ends of the cable route. In this case a current will appear in the screen. This will cause losses in the screen, which reduces the cable current-corrying capacity. These losses are smaller for cables in trefoil formation than in flat formation.

Single-point bonding of screens, means that the screens are connected and earthed at one end of the cable route. In this case, a valtage will be induced between screen and earth, but no current will appear. This induced valtage is proportional to the cable length and current. Single-point bonding can only be used for limited route lengths.

Cross-bonding of screens, means that the screens belonging to adjoining cables are connected as in the figure. In thiscase, a voltage will be induced between screen and earth, but no current will appear. The maximum induced voltage will appear at the link baxes for cross-bonding, see figure. This method permits a cable current- carrying capacity as high as with single-point bonding but longer route lengths than the latter. It requires screen separation and additional link baxes.

DIC ▲BS[™]

Certificate of Registration

DICABS

[*] Calculated Diameter Under Outer Sheath mm		Thickness Shea Unarn Cal	Minimum of Outer Sheath for Armoured Cable	
Above	UP to and Including	Nominal mm	minimum mm	mm
	40	2.4	1.72	1.72
40	45	26	1.88	1.88
45	50	2.8	2.04	2.04
50	55	3.0	2.20	2.20
55	60	3.2	2.36	2.36
60	65	3.4	2.52	2.52
65	70	3.6	2 68	2 68
70	75	3.8	2.84	2.84
75	-	4.0	3.00	3.00

THICKNESS OF OUTER SHEATH EHV CABLE

*Note: Fictitious diameter calculated as described in Annex B of IS 7098 (Part-3)

RESISTIVITY TEST FOR SEMI-CONDUCTOR LAYER

The

resistivity test for extruded semi-conducting layers applied over the conductorand over the insulation shall be determined by measurements on test pieces taken from core.

The procedure for measurement shall be in accordance with Annex Cof IS 7098 (Part-3).

The measurement shall be made at a temperature within \pm 2°C of the rated maximum normal operating conductor temperature.

The resistivity shall not exceed the following:

Conductor Screen Core Screen 1000 ohm-metre

Our Prestigious Clients

Corporate Office

"Essen House", 5/9-10, B.I.D.C., Gorwa, Vadodara, 390016 Tel.: 0265-2284328, 2283969, 2280973 Fax: 0265-2280528 • Email: marketing@dicabs.com

GLOBAL Office

GUBAL UMCE DIAMOND POWER GLOBAL HOLDINGS LTD Office No-108, AI WasI Building, Opp. Burj Khalifa 1°Interchange. Sheikh Zayed Road, Next to Posche Shavroom, P.o. Box: 11765 Dubai, U.A.E Tel.:+971-43804030 • Fax:+971-43804110 • Email: marketing@dicabs.ae

Branch Offices

New Delhi - B-62, 6th Floor, Himalaya House, 23, Kasturba Gandhi Marg, New Delhi-110001 Tel.: +011-45662531 • Email: delhi@dicabs.com Mumbai - '349 Business Point' Office No. 401, Western Express Highway, Andheri East, Mumbai - 400069 Ahmedabad - +91 9714856569

Chennai - +91 9327237171 Meerut - +91 9958372727 Surat Hyderabad - +91 9703398866

www.dicabs.com